
Niels Malotaux

How to deliver Quality On Time
in Software Development

and Systems Engineering Projects

Delivery
TasksTasks

Delivery
Tasks Tasks Tasks

Delivery
Tasks Tasks Tasks Tasks Tasks

www.malotaux.nl/booklets 1

Niels Malotaux

How to deliver Quality On Time in Software Development and Systems Engineering Projects

Software developers systematically fail to manage pro-
jects within the constraints of cost, schedule,
functionality and quality. Solutions have been
developed during the past 35 years, with important
results published already some 15 years ago. Still, in
practice not much has changed. The challenge is to find
ways to catch the practical essence of solutions and
ways to get the developers to use these solutions.
In this booklet, we show methods and techniques,
which do enable software developers and management
to successfully managing projects within the constraints
of cost, schedule, functionality and quality. These
methods are taught and coached in actual development
projects with remarkable results: typically, projects can
be done in 30% shorter time.
While software development results were usually
delivered late, the delays in other disciplines (like hard-
ware and mechanical development) seemed to be
non-existent. Now that we have taught Software
Development to deliver Quality On Time (the right re-
sults at the right time and within budget), the delays in
the other disciplines become exposed. The methods and
techniques described in this booklet are obviously not
limited to just software development. For those
projects where delivering Quality On Time is important
it is about time that we are going to apply the
techniques at the Systems Development level. There-
fore the next target for Evolutionary Development
Methods will be Systems Engineering.
Note that the contents of this booklet describe ongoing
developments. The methods are being used by the
author with various clients and are continuously being
optimised based on results found.

Keywords – Evolutionary delivery, Software Process
Improvement, Project management, Development, Risk
management, On Time delivery, Systems Engineering.

1. INTRODUCTION

Software developers systematically fail to manage
projects within the constraints of cost, schedule,
functionality and quality. More than half of ICT users still
is not content with the performance of ICT suppliers
[Ernst&Young, 2001]. This is known for some 35 years.
Solutions have been developed during the past 35 years,
with impressive results published already years ago (e.g.
Mills, 1971 [1], Brooks, 1987 [2], Gilb, 1988 [3]). Still, in
practice not much has changed.

An important step in solving this problem is to accept
that if developers failed to improve their habits, in spite of
the methods presented in the past, there apparently are
psychological barriers in humans, preventing adoption of
these methods. The challenge is to find ways to catch the
practical essence of the solutions to manage projects
within the constraints of cost, schedule, functionality and
quality, and ways to get the developers to use these
solutions.
The importance of solving the problem is mainly
economical:
• Systematically delivering software development

results within the constraints of cost, schedule,
functionality and quality saves unproductive work,
both by the developers and the users (note Crosby,
1996: the Price Of Non-Conformance [4])

• Prevention of unproductive work eases the shortage
of IT personnel

• Enhancing the quality level of software developments
yields a competitive edge

• Being successful eases the stress on IT personnel,
with positive health effects as well as positive
productivity effects

In this booklet, we show methods and techniques,
labelled “Evo” (from Evolutionary), which enable soft-
ware developers and management to deliver “Quality On
Time”, which is short for successfully managing projects
within the constraints of cost, schedule, functionality and
quality. These methods are taught and coached in actual
development projects with remarkable results.
The contents is based on practical experiences and on
software process improvement research and develop-
ment and especially influenced by Tom Gilb (1988 [3],
later manuscripts [5] and discussions).

2. HISTORY

Most descriptions of development processes are based
on the Waterfall model, where all stages of development
follow each other (Figure 1). Requirements must be fixed
at the start and at the end we get a Big Bang delivery. In
practice, hardly anybody really follows this model,
although in reporting to management, practice is bent
into this model. Management usually expects this simple
model, and most development procedures describe it as
mandatory. This causes a lot of miscommunication and
wastes a lot of energy.

Niels Malotaux: Evolutionary Development Methods 2

Early descriptions of Evolutionary delivery,
then called Incremental delivery, are
described by Harlan Mills in 1971 [1] and
F.P. Brooks in his famous "No silver bullet"
article in 1987 [2]. Evolutionary delivery is
also used in Cleanroom Software
Engineering [6].
A practical elaboration of Evolutionary
development theory is written by Tom Gilb
in his book “Principles of Software Engi-
neering Management” in 1988 [3] and in
newer manuscripts on his web-site [16].
Incremental delivery is also part of
eXtreme Programming (XP) [15, 17],
however, if people claim to follow XP, we
hardly see the Evo element practiced as described here.
We prefer using the expression Evolutionary delivery, or
Evo, as proposed by Tom Gilb, because not all Incremen-
tal delivery is Evolutionary. Incremental delivery methods
use cycles, where in each cycle, part of the design and
implementation is done. In practice this still leads to Big
Bang delivery, with a lot of debugging at the end. We
would like to reserve the term Evolutionary for a special
kind of Incremental delivery, where we address issues
like:

• Solving the requirements paradox
• Rapid feedback of estimation and results impacts
• Most important issues first
• Highest risks first
• Most educational or supporting issues for the

development first
• Synchronising with other developments

(e.g. hardware development)
• Dedicated experiments for requirements clarification,

before elaboration is done
• Every cycle delivers a useful, completed, working,

functional product
• At the fatal end day of a project we should rather

have 80% of the (most important) features 100% done,
than 100% of all features 80% done. In the first case,
the customer has choice to put the product on the
market or to add some more bells and whistles. In the
latter case, the customer has no choice but to wait
and grumble

In Evolutionary delivery, we follow the waterfall model
(Figure 1) repeatedly in very short cycles (Figure 2).

3. ISSUES ADDRESSED BY EVO

A. Requirements Paradoxes
The 1st Requirements Paradox is:
• Requirements must be stable for reliable results
• However, the requirements always change
Even if you did your utmost best to get complete and
stable requirements, they will change. Not only because
your customers change their mind when they see
emerging results from the developments. Also the
developers themselves will get new insights, new ideas
about what the requirements should really be. So,
requirements change is a known risk. Better than
ignoring the requirements paradox, use a development
process that is designed to cope with it: Evolutionary
delivery.
Evo uses rapid and frequent feedback by stakeholder
response to verify and adjust the requirements to what
the stakeholders really need most. Between cycles there
is a short time slot where stakeholders input is allowed
and requested to reprioritise the list.
This is due to the 2nd Requirements Paradox:
• We don’t want requirements to change
• However, because requirements change now is a

known risk, we try to provoke requirements change as
early as possible

We solve the requirements paradoxes by creating stable
requirements during a development cycle, while
explicitly reconsidering the requirements between
cycles.

waterfall

waterfall

waterfall

waterfall

waterfall

waterfall

waterfall

waterfall

finalise

cycle 1 2 3 4 5 6 7 8 9 10 11 12 n-1 n

waterfall

waterfall

waterfall

waterfall

waterfall

waterfall

waterfall

waterfall

finalise

prepare

Figure 2: Evolutionary delivery uses many waterfalls

Figure 1: Waterfall development model

requirements
analysis

architectural
design

detailed
design

implementation
& testing

qualification
testing

delivery

www.malotaux.nl/booklets 3

B. Very short cycles
Actually, few people take planned dates seriously. As
long as the end date of a project is far in the future
(Figure 3), we don't feel any pressure and work leisurely,
discuss interesting things, meet, drink coffee, ...
(How many days before your last exam did you really
start working...?).

So at the start of the project we work relatively slowly.
When the pressure of the finish date becomes tangible,
we start working harder, stressing a bit, making errors
causing delays, causing even more stress. The result: we
don’t finish in time. We know all the excuses, which
caused us to be late. It's never our own fault. This is not
wrong or right. It's human psychology. That is how we
function. So don't ignore it. Accept it and then think
what to do with it.

Smart project managers tell their team an earlier date
(Figure 4). If they do this cleverly, the result may be just
in time for the real date. The problem is that they can do
this only once or twice. The team members soon will
discover that the end date was not really hard and they
will lose faith in milestone dates. This is even worse.
The solution for coping with these facts of human
psychology is to plan in very short increments (Figure 5).
The duration of these increments must be such that:

• The pressure of the end date is felt right the first day
• The duration of a cycle must be sufficient to finish real

tasks
Three weeks is too long for the pressure and one week
may be felt as too short for finishing real tasks. Note that
the pressure in this scheme is much healthier than the
real stress and failure at the end of a Big Bang (delivery
at once at the end) project. The experience in an actual
project, where we got only six weeks to finish complete-
ly, led to using one-week cycles. The results were such,
that we will continue using one-week cycles on all
subsequent projects. If you cannot even plan a one-week
period, how could you plan longer periods …?
C. Rapid and frequent feedback
If everything would be completely clear we could use the
waterfall development model. We call this production
rather than development. At the start of a new
development, however, there are many uncertainties we
have to explore and to change into certainties. Because
even the simplest development project is too complex
for a human mind to oversee completely (E. Dijkstra,
1965: “The competent programmer is fully aware of the
limited size of his own skull” [12]) we must iteratively
learn what we are actually dealing with and learn how to
perform better.
This is done by “think first, then do”, because thinking
costs less than doing. But, because we cannot foresee
everything and we have to assume a lot, we constantly
have to check whether our thoughts and assumptions
were correct. This is called feedback: we plan something,
we do it as well as we can, then we check whether the
effects are correct. Depending on this analysis, we may
change our ways and assumptions. Shewhart already
described this in 1939 [13]. Deming [14] called it the
Shewhart cycle (Figure 6). Others call it the Deming cycle
or PDCA (Plan-Do-Check-Act) cycle.

In practice we see that if developers do something
(section 2 of the cycle), they sometimes plan (section 1),
but hardly ever explicitly go through the analysis and
learn sections. In Evo we do use all the sections of the
cycle deliberately in rapid and frequent feedback loops
(Figure 7, next page):

• The weekly task cycle
In this cycle we optimise our estimation, planning and
tracking abilities in order to better predict the future.

Figure 5: The solution: choose short, realistic “delivery
dates”. Satisfaction, motivation, fast feedback.

start planning

h
ar

d
 w

o
rk

Figure 6: Shewhart cycle, Deming cycle, PDCA cycle.

1

2 3

4

Plan
What do we

want to know
or to do

Do
Carry out plan

Check
Analyse the
effects

Act
What can
we learn

Figure 3: We only start working harder when the pressure
of the delivery date is near. Usually we are late.

start planning

h
ar

d
 w

or
k

Figure 4: To overcome the late delivery problem, a smart
project manager sells his team an earlier delivery date.

Even smarter developers soon will know.

start planning

h
ar

d
 w

or
k

smart planning?

Niels Malotaux: Evolutionary Development Methods 4

We check constantly whether
we are doing the right things in
the right order to the right level
of detail for the moment.

• The frequent stakeholder value
delivery cycle
In this cycle we optimise the
requirements and check our
assumptions. We check con-
stantly whether we are deliver-
ing the right things in the right
order to the right level of detail
for the moment. Delivery cycles
may take 1 to 3 weekly cycles.

• The strategic objectives cycle
In this cycle we review our
strategic objectives and check
whether what we do still com-
plies with the objectives. This
cycle may take 1 to 3 months.

• The organisation roadmap cycle
In this cycle we review our roadmap and check
whether our strategic objectives still comply with
what we should do in this world. This cycle may take 3
to 6 months.

In development projects, only task cycles and delivery
cycles are considered. In a task cycle, tasks are done to
feed the current delivery, while some other tasks may be
done to make future deliveries possible (Figure 8).
D. Time Boxing
Evolutionary project organisation uses time boxing
rather than feature boxing. If we assume that the amount
of resources for a given project is fixed, or at least
limited, it is possible to realise either:
• A fixed set of features in the time needed to realise

these features. We call this feature boxing
• The amount of features we can realise in a fixed

amount of time. We call this time boxing

To realise a fixed set of features in a fixed amount of
time with a given set of resources is only possible if the
time is sufficient to realise all these features. In practice,
however, the time allowed is usually insufficient to real-
ise all the features asked: What the customer wants, he
cannot afford. If this is the case, we are only fooling our-
selves trying to accomplish the impossible (Figure 9).
This has nothing to do with lazy or unwilling developers:
if the time (or the budget)
is insufficient to realise all
the required features, they
will not all be realised. It is
as simple as that.
The Evo method makes
sure that the customer gets
the most and most im-
portant features possible
within a certain amount of
time and with the available
resources.
Asking developers to accomplish the impossible is one of
the main energy drains in projects. By wasting energy the
result is always less than otherwise possible.
In practice, time boxing means:
• A set number of hours is reserved for a task
• At the end of the time box, the task should be 100%

done. That means really done
• Time slip is not allowed in a time box, otherwise other

tasks will be delayed and this would lead to uncon-
trolled delays in the development

• Before the end of the time box we check how far we
can finish the task. If we foresee that we cannot finish
a task, we should define what we know now, try to
define what we still have to investigate, define tasks
and estimate the time still needed. Preferably,
however, we should try whether we could go into less
detail this moment, actually finishing the task to a
sufficient level of detail within the time box.

A TaskSheet is used to define (details see [8]):
o The goal of the task
o The strategy to perform the task
o How the result will be verified
o How we know for sure that the task

 is really done (i.e. there is really
 nothing we have to do any more for
 this task, we can forget about it)

E. Estimation, planning and tracking
Estimation, planning and tracking are an
inseparable trinity. If you don't do one of
them, you don't need the other two.
• If you don't estimate, you cannot
 plan and there is nothing to track
• If you do not plan, estimation and
 tracking is useless
• If you do not track, why should you
 estimate or plan?

Figure 9: If resources and

time are fixed, the features
are variable

featurestime

resources

featurestime

resources

project

organisation

roadmap

strategy

delivery

task

Figure 7:

Cycles in Evo

Figure 8: Current tasks feed the current delivery cycle,
as well as prepare for future delivery cycles.

Delivery

TasksTasks

Delivery
Tasks Tasks Tasks

Delivery
Tasks Tasks Tasks Tasks Tasks

www.malotaux.nl/booklets 5

So:
• Derive small tasks from the requirements, the

architecture and the overall design
• Estimate the time needed for every small task
• Derive the total time needed from:

o The time needed for all the tasks
o The available resources
o Corrected for the real amount of time available per

resource (nobody works a full 100% of his presence
on the project. The statistical average is about 55%.
This is one of the key reasons for late projects! [9])

• Plan the next cycle exactly
• Be sure that the work of every cycle can be done.

That means really done. Get commitment from those
who are to do the real work

• Plan the following cycles roughly (the planning may
change anyway!)

• Track successes and failures. Learn from it. Refine
estimation and planning continuously. Warn
stakeholders well in advance if the target delivery time
is changing because of any reason

• There may be various target delivery times,
depending on various feature sets

If times and dates are not important to you (or to
management), then don't estimate, plan, nor track: you
don't need it. However, if timing is important, insist on
estimation, planning and tracking. And it is not even
difficult, once you get the hang of it.
If your customer (or your boss) doesn't like to hear that
you cannot exactly predict which features will be in at
the fatal end day, while you know that not all features
will be in (at a fixed budget and fixed resources), you can
give him two options:
• Either to tell him the day before the fatal day that you

did not succeed in implementing all the functions.
• Or tell him now (because you already know), and let

him every week decide with you which features are
the most important

It will take some persuasion, but you will see that within
two weeks you will work together to get the best possi-
ble result. There is one promise you can make: The
process used is the most efficient process available. In
any other way he will never get more, probably less. So
let's work together to make the best of it. Or decide at
the beginning to add more resources. Adding resources
later evokes Brooks Law [9]: "Adding people to a late
project makes it later". Let's stop following
ostrich-policy, face reality and deal with it in a realistic
and constructive way.
F. Difference between effort and lead-time
If we ask software developers to estimate a given task in
days, they usually come up with estimates of lead-time. If
we ask them to estimate a task in hours, they come up
with estimates in effort. Project managers know that
developers are optimistic and have their private multipli-
er (like 2, √2, e, or π) to adjust the estimates given.

Because these figures then have to be entered in
project-planning tools, like MS Project, they enter the
adjusted figures as lead-time.
The problem with lead-time figures is that these are a
mix of two different time components:
• Effort, the time needed to do the work
• Lead-time, the time until the work is done. Or rather

Lead-time minus Effort, being the time needed for
other things than the work to be done. Examples of
“other things” are: drinking coffee, meetings, going
to the lavatory, discussions, helping colleagues,
telephone calls, e-mail, dreaming, etc. In practice we
use the Effort/Lead-time ratio, which is usually in the
range of 50-70% for full-time team members

Because the parameters causing variation in these two
components are different, they have to be kept apart
and treated differently. If we keep planning only in
lead-time, we will never be able to learn from the
tracking of our planned, estimated figures. Thus we will
never learn to predict development time. If these
elements are kept separately, people can learn very
quickly to adjust their effort estimating intuition. In
recent projects we found: first week: 40% of the com-
mitted work done, second week: 80% done, from the
third week on: 100% or more done. Now we can start
predicting!
Separately, people can learn time management to
control their Effort/Lead-time ratio. Brooks indicated this
already in 1975 [9]: Programming projects took about
twice the expected time. Research showed that half of the
time was used for activities other than the project.
In actual projects, we currently use the rule that people
select 2/3 of a cycle (26 hours of 39) for project tasks, and
keep 1/3 for other activities. Some managers complain
that if we give about 3 days of work and 5 days to do the
work, people tend to “Fill the time available”. This is
called Parkinson’s Law [10]: “Work expands so as to fill
the time available for its completion”. Management uses
the same reasoning, giving them 6 days of work and 5
days to do it, hoping to enhance productivity. Because 6
days of effort cannot be done in 5 days, and people have
to do, and will do the other things anyway, people will
always fail to succeed in accomplishing the impossible.
What is worse: this causes a constant sense of failure,
causing frustration and demotivation. If we give them
the amount of work they can accomplish, they will suc-
ceed. This creates a sensation of accomplishment and
success, which is very motivating. The observed result is
that giving them 3 days work for 5 days is more
 productive that giving them 6 days of work for 5 days.

G. Commitment
In most projects, when we ask people whether a task is
done, they answer: “Yes”. If we then ask, “Is it really
done?”, they answer: “Well, almost”. Here we get the
effect that if 90% is done, they start working on the other

Niels Malotaux: Evolutionary Development Methods 6

90%. This is an important cause of delays. Therefore, it is
imperative that we define when a task is really 100% done
and that we insist that any task be 100% done. Not 100% is
not done.
In Evo cycles, we ask for tasks to be 100% done. No need
to think about it anymore. Upon estimating and planning
the tasks, effort hours have been estimated. Weekly, the
priorities are defined. So, every week, when the project
manager proposes any team member the tasks for the
next cycle, he should never say “Do this and do that”. He
should always propose: “Do you still agree that these
tasks are highest priority, do you still agree that you
should do it, and do you still agree with the estimations?”
If the developer hesitates on any of these questions, the
project manager should ask why, and help the developer
to re-adjust such that he can give a full commitment that
he will accomplish the tasks.
The project manager may help the developer with
suggestions (“Last cycle you did not succeed, so maybe
you were too optimistic?”). He may never take over the
responsibility for the decision on which tasks the
developer accepts to deliver. This is the only way to get
true developer commitment. At the end of the cycle the
project manager only has to use the mirror. In the mirror
the developer can see himself if he failed in fulfilling his
commitments. If the project manager decided what had
to be done, the developer sees right through the mirror
and only sees the project manager.
It is essential that the project manager coaches the
developers in getting their commitments right. Use the
sentence: “Promise me to do nothing, as long as that is
100% done!” to convey the importance of completely
done. Only when working with real commitments,
developers can learn to optimise their estimations and
deliver accordingly. Else, they will never learn. Project
managers being afraid that the developers will do less
than needed and therefore giving the developers more
work that they can commit to, will never get what they
hope for because without real commitment, people tend
to do less.

H. Risks
If there are no risks whatsoever, use the waterfall model
for your development. If there are risks, which is the case
in any new development, we have to constantly assess
how we are going to control these risks. Development is
for an important part risk-reduction. If the development
is done, all risks should have been resolved. If a risk turns
out for worse at the end of a development, we have no
time to resolve it any more. If we identify the risks
earlier, we may have time to decide what to do if the risk
turns out for worse. Because we develop in very short
increments of one week, the risk that an assumption or
idea consumes a lot of development time before we
become aware that the result cannot be used, is limited
to one week. Every week the requirements are

redefined, based upon what we learnt before.
Risks are not limited to assumptions about the product
requirements, where we should ask ourselves:
• Are we developing the right things right?
• When are things right?
Many risks are also about timing and synchronisation:
• Can we estimate sufficiently accurate?
• Which tasks are we forgetting?
• Do we get the deliveries from others (hardware,

software, stakeholder responses, …) in time?
Actually the main questions we are asking ourselves
systematically in Evo are: What should we do, in which
order, to which level of detail for now. Too much detail
too early means usually that the detail work has to be
done over and over again. The detail work may not have
been done wrong. It only later turns out that it should
have been done differently.

I. Team meetings
Conventional team meetings usually start with a round of
excuses, where everybody tells why he did not succeed
in what he was supposed to do. There is a lot of
discussion about the work that was supposed to be
done, and when the time of the meeting is gone, new
tasks are hardly discussed. This is not a big problem,
because most participants have to continue their
unfinished work anyway. The project manager notes the
new target dates of the delayed activities and people
continue their work. After the meeting the project
manager may calculate how much reserve (“slack time”)
is left, or how much the project is delayed if all reserve
has already been used. In many projects we see that
project-planning sheets (MS Project) are mainly used as
wallpaper. They are hardly updated and the actual work
and the plan-on-the-wall diverge more and more every
week.
In the weekly Evo team meeting, we only discuss new
work, never past work. We do not waste time for
excuses. What is past we cannot change. What we still
should do is constantly re-prioritised, so we always work
on what is best from this moment. We don’t discuss past
tasks because they are finished. If discussion starts about
the new tasks, we can use the results in our coming
work. That can be useful. Still, if the discussion is be-
tween only a few participants, it should be postponed till
after the meeting, not to waste the others’ time.

J. Magic words
There are several “magic words” that can be used in Evo
practice. They can help us to doing the right things in the
right order to the right level of detail for this moment.
• Focus

Developers tend to be easily distracted by many
important or interesting things. Some things may
even really be important, however, not at this
moment. Keeping focus at the current priority goals,
avoiding distractions, is not easy, but saves time.

www.malotaux.nl/booklets 7

• Priority
Defining priorities and only working on the highest
priorities guides us to doing the most important
things first.

• Synchronise
Every project interfaces with the world outside the
project. Active synchronisation is needed to make
sure that planned dates can be kept.

• Why
This word forces us to define the reason why we
should do something, allowing us to check whether it
is the right thing to do. It helps in keeping focus.

• Dates are sacred
In most projects, dates are fluid. Sacred dates means
that if you agree on a date, you stick to your word. Or
tell well in advance that you cannot keep your word.
With Evo you will know well in advance.

• Done
To make estimation, planning and tracking possible,
we must finish tasks completely. Not 100% finished is
not done. This is to overcome the “If 90% is done we
continue with the other 90%” syndrome.

• Bug, debug
A bug is a small creature, autonomously creeping into
your product, causing trouble, and you cannot do
anything about it. Wrong. People make mistakes and
thus cause defects. The words bug and debug are
dirty words and should be erased from our dictionary.
By actively learning from our mistakes, we can learn
to avoid many of them. In Evo, we actively catch our
mistakes as early as possible and act upon them.
Therefore, the impact of the defects caused by our
mistakes is minimised. This leaves a bare minimum of
defects at the end of the project. Evo projects do not
need a special “debugging phase”.

• Discipline
With discipline we don’t mean imposed discipline, but
rather what you, yourself, know what is best to do. If
nobody watches us, it is quite human to cut corners,
or to do something else, even if we know this is
wrong. We see ourselves doing a less optimal thing
and we are unable to discipline ourselves. If
somebody watches over our shoulder, keeping
discipline is easier. So, discipline is difficult, but we
can help each other. Evo helps keeping discipline.
Why do we want this? Because we enjoy being
successful, doing the right things.

4. HOW DO WE USE EVO IN PROJECTS

In our experience, many projects have a mysterious start.
Usually when asked to introduce Evo in a project, one or
more people have been studying the project already for
some weeks or even months. So in most cases, there are
some requirements and some idea about the architec-
ture. People acquainted with planning usually already
have some idea about what has to be done and have

made a conventional planning, based on which the
project was proposed and commissioned.

A. Evo day
To change a project into an Evo project, we organise an
“Evo day”, typically with the Project Manager, the
architect, a tester and all other people of the
development team. Stakeholder attendance can be
useful, but is not absolutely necessary at the first Evo
day, where we just teach the team how to change their
ways. During the Evo day (and during all subsequent
meetings) a notebook and a LCD projector are used, so
that all participants can follow what we are typing and
talking about. It is preferable to organise the Evo day
outside the company.
The schedule is normally:
Morning
• Presentation of Evo methods [11]: why and how
• Presentation of the product by the systems architect

(people present usually have different views, or even
no view, of the product to be developed)

Afternoon
In the afternoon we work towards defining which
activities should be worked on in the coming week/cycle.
Therefore we do exercises in:
• Defining sub-tasks of max 26 hours.

In practice, only few activities will be detailed. People
get tired of this within 20 minutes, but they did the
exercise and anyway we don’t have time to do it all in
one day

• Estimating the effort of the sub-tasks, in effort-hours,
never in days, see “Difference between effort and
lead-time” above

• Defining priorities
• Listing the tasks in order of priority
• Dividing top-priority activities, which have not yet

been divided into sub-tasks
• Estimating effort on top-priority sub-tasks if not yet

done
• The team decides who should do what from the top

of the list
• Every individual developer decides which tasks he will

be able to deliver done, really done at the end of the
cycle. If a commitment cannot be given, take fewer
tasks, until full commitment can be given

At the end of the day everyone has a list of tasks for the
coming week, and a commitment that these tasks will be
finished completely, while we are sure that the tasks we
start working on have the highest priority.

B. Last day of the cycle 1
The last day of a cycle is special and divided into 3 parts
(Figure 10, next page):

1 See newer booklet “How Quality is Assured by Evolutionary
Methods” for an updated approach of this part.

Niels Malotaux: Evolutionary Development Methods 8

• The project manager visits every developer individu-
ally and discusses the results of the tasks. If the com-
mitments could not be met, they discuss the causes:
Was the effort estimation incorrect or was there a
time-management problem. The developer should
learn from the results to do better the next time.
After having visited all developers, the project
manager has an overview of the status of the project

• The status of the project is discussed with the
customer, product manager, or whichever relevant
stakeholders. Here the Requirements Paradox is
handled: during the week, the requirements were
fixed, now is the 1 to 2 hours timeslot that the stake-
holders may re-arrange the requirements and
priorities. At the end of this meeting, the
requirements and priorities are fixed again

• Finally, the project manager defines task-proposals
for the developers and discusses these proposals with
them individually. Developers agree that these tasks
have the highest priority and commit to finishing
these tasks during the cycle

C. Team meeting
Having prepared the individual task-lists for the next
cycle, in the team meeting, at the end of the last cycle
day, or the beginning of the first new cycle day, the
following is done:

• Experience from the past cycle may be discussed if it
could benefit subsequent work

• The status of the project is discussed. Sub-tasks may
be (re-)defined and (re-)estimated if full participation
is useful

• The tasks for the next cycle are formally assigned and
committed to. Now all participants hear who is going
to do what and may react upon it

• Discussion may be allowed, if it affects most
participants

• The discussions may cause some reprioritisation and
thus reshuffling of tasks to be done

Weekly team meetings typically take less than 20
minutes. A typical reaction at the end of the first Evo
team meeting was: “We never before had such a short
meeting”. When asked “Did we forget to discuss
anything important?”, the response was: “No, this was a
good and efficient meeting”. This is one of the ways we
are saving time.

5. CHECK LISTS

There are several checklists being used to help defining
priorities and to help to get tasks really finished.
These are currently:
A. Task prioritisation criteria
B. Delivery prioritisation criteria
C. Task conclusion criteria

A. Task prioritisation criteria
To help in the prioritisation process of which tasks should
be done first, we use the following checklist:
• Most important issues first (based on current and

future delivery schedules)
• Highest risks first (better early than late)
• Most educational or supporting activities first
• Synchronisation with the world outside the team (e.g.

hardware needs test-software, software needs
hardware for test: will it be there when needed?)

• Every task has a useful, completed, working,
functional result

B. Delivery prioritisation criteria
To help in the prioritisation process of what should be in
the next delivery to stakeholders we use the following
checklist:

• Every delivery should
have the juiciest, most
important stakeholder
values that can be made in
the least time.
• Impact Estimation [7] is
a technique that can be
used to decide on what to
work on first
• A delivery must have
symmetrical stakeholder
values. This means that if a
program has a start, there
must also be an end. If there
is a delete function, there
must be also some add
function. Generally speak-
ing, the set of values must
be a useful whole

Ta
sk

s d
one?

Coa
ch

ing
Mark

et
wind

ow

New
 ta

sk
s +

Com
mitm

en
t

116 119 120 121117 118

cycles

Wor
kin

g o
n t

as
ks

Wor
kin

g o
n t

as
ks

Wor
kin

g o
n t

as
ks

Req
uir

em
en

ts
ch

ec
k

Plan
nin

g
Te

am
 m

ee
tin

g

Tas
kS

hee
t

Tas
kS

hee
t r

ev
iew

Res
ult

 of
 ta

sk
s c

he
ck

ed

Req
uir

em
en

ts
ch

ec
k

Plan
nin

g
Te

am
 m

ee
tin

g

Tas
kS

hee
t

Tas
kS

hee
t r

ev
iew

wed thu fri mon tue wed thu

1 week cycle

Te
am

 m
ee

tin
g

(20
min)

Last day of a cycle

Figure 10: Structure of a weekly cycle

?

Rep
rio

rit
ise

Req
uir

em
en

ts
fix

ed

116 119 120 121117 118

wed thu fri mon tue wed thu

119 120 121117 118

wed thu fri mon tue wed thuwed thu fri mon tue wed thu

www.malotaux.nl/booklets 9

• Every subsequent delivery must show a clear
difference. Because we want to have stakeholder
feedback, the stakeholder must see a difference to
feedback on. If the stakeholder feels no difference he
feels that he is wasting his time and loses interest to
generate feedback in the future

• Every delivery delivers the smallest clear increment. If
a delivery is planned, try to delete anything that is not
absolutely necessary to fulfil the previous checks. If
the resulting delivery takes more than two weeks, try
harder

C. Task conclusion criteria
If we ask different people about the contents of a
defined task, all will tell a more or less different story. In
order to make sure that the developer develops the right
solution, we use a TaskSheet (details see [8]).
Depending on the task to be done, TaskSheets may be
slightly different. First, the developer writes down on the
TaskSheet:
• The requirements of the result of the task
• Which activities must be done to complete the task
• Design approach: how to implement it
• Verification approach: how to make sure that it does

what it should do and does not do what it should not
do, based on the requirements

• Planning (if more than one day work). If this is
difficult, ask: “What am I going to do the first day”

• Anything that is not yet clear
Then the TaskSheet is reviewed by the system architect.
In this process, what the developer thinks has to be done
is compared with what the system architect expects: will
the result fit in the big picture? Usually there is some
difference between these two views and it is better to
find and resolve these differences before the actual exe-
cution of the task than after. This simply saves time.
After agreement, the developer does the work, verifies
that the result produced not less, but also not more, than
the requirements asked for. Nice things are not allowed:
Anything not specified in the requirements is not tested.
Nobody knows about it and this is an irresolvable and
therefore unwanted risk.
Finally, the developer uses the task conclusion criteria on
the TaskSheet to determine that the task is really done.
These criteria may be adapted to certain types of tasks.
In practical projects, where software code was written
we used the following list:
• The code compiles and links with all files in the

integration promotion level
• The code simply does what it should do: no bugs
• There are no memory leaks
• Defensive programming measures have been

implemented
• All files are labelled according to the rules agreed.
• File promotion is done
• I feel confident that the tester will find no problems

This checklist is to make sure that the task is really done.
If all checks are OK, then the work is done. If it later turns
out that the work was not completely done, then the
checklist is improved.

6. INTRODUCING EVO IN NEW PROJECTS

Many projects where we start introducing Evo are
already running. We organise an Evo-day to turn the
project into an Evo project. The project has already more
or less insight in what has to be done, so this can be
estimated, prioritised and selected.

In the case of completely new projects many team
members do not yet know what has to be done, let alone
how. If team members have no previous Evo experience,
they hardly can define tasks and thus estimation and
planning of tasks seems hardly possible. Still, the goal of
the first Evo day is that at the end of the day the team
knows roughly what to do the coming weeks, and exact-
ly what to do the first week. So there is a potential prob-
lem.

This problem can be solved by:
• Defining the goal of the project
• Defining the critical success factors and the expecta-

tions of the project result from key stakeholders
• Defining what should be done first. What do you think

you should be starting on first? Like:
o Requirements gathering
o Experiments
o Collecting information about possible tools,

languages, environments
o Getting to know the selected tools, languages, en-

vironments, checking whether they live up to their
promise

When we ask how much time the team members are
going to spend on these activities, the answer is usually
“I don’t know”, “I don’t know what I am going to search
for, what I am going to find or going to decide, so I can-
not estimate”. This may be true, but should not be used
as a licence to freely spend time. Define important things
that should be done. Define time boxes, like “Use 10
hours on Requirements collection”, or “Use 8 hours to
draw up a tool inventory”. Then put these tasks on the
list of Candidate Tasks, define priorities and let every-
body take 26 hours of the top of the list, get commit-
ments and that’s it. Then, the next week, based on the
findings of the first week, the team already is getting a
better idea of what really has to be done. The “fuzzy
front end” of projects usually eats up a lot of project
time, because the team lacks focus in defining what real-
ly has to be done in the project. Evo helps to keep focus
and to quickly learn, by evolutionary iterations, what the
project really is about.

Still, in some cases the team members cannot set their
mind to commit to not-so-clear tasks within a time box.

Niels Malotaux: Evolutionary Development Methods 10

Then, but only as a last resort, team members may do
whatever they want, provided that during the work they
record what they are doing and how long. This is learning
material for the next weeks' meeting. Note that
especially if the task is not so clear, it is better first to
make it clearer, before spending too much time on it.
These problems can be avoided if we start the new pro-
ject with people who already have worked the Evo way.
Then they know why and how to define tasks, define
time boxes, set priorities and finish tasks. This enables
them to efficiently start any project, without constantly
asking why it has to be done this way. They know why
and how. Starting using Evo at a completely new project
adds up two challenges: learning what the project is all
about and learning Evo. It is easier to start learning Evo
on a running project, because then the project is already
known and only Evo has to be added. However, if there is
no Evo experience available when starting a new project,
it is still advisable to start using Evo even then, simply
because it will lead to better results faster. In this case, a

good coach is even more needed to make Evo succeed
the first time.

7. TESTING WITH EVO

When developing the conventional way, testing is done
at the end of the development, after the Big Bang
delivery. Testers then tend to find hundreds of defects,
which take a long time to repair. And because there are
so many defects, these tend to influence each other.
Besides, repairing defects causes more defects.
Software developers are not used to using statistics. If
we agree that testing never covers 100% of the software,
this means that testing is taking a sample. At school we
learnt that if we sample, we should use statistics to say
something about the whole. So we should get used to
statistics and not run away from it.
Statistics tell us that testing is on average 50%
effective. Until you have your own (better?) figures, we
have to stick to this figure. This means that the user will
find the same amount of defects as found in test.

measure
quality

measure
quality

measure
quality

measure
quality

measure
quality

final
validation

delivery delivery delivery delivery delivery
zero
defect
delivery

evolutionary project track

Figure 11: Testing of early deliveries helps the developers to get ready for zero-defect final delivery.

requirements derived
tasks

newly defined
tasks

change
requests

problem
reports

database

CCB

• reject
• later
• new task
• analysis task

candidate tasks hours priority

task 1 4 5

task 2 6 5
task 3 3 5
task 4 7 4

4
3
3
2
2
1
0

task n 23 0 hours: real effort
priority: 5 = highest, 1 = lowest, 0 = on hold

Figure 12: All activities, including Change Requests, Problem Reports and Newly Defined Tasks

use the same mechanism for estimation and prioritizing: the list of candidate tasks

www.malotaux.nl/booklets 11

Paradoxically, this means that the more defects we find
in test, the more the user will find. Or, if we do not want
the user to find any defects, the test should find no de-
fects at all. Most developers think that defect-free
software is impossible. If we extrapolate this, it means
that we think it is quite normal that our car may stop
after a few kilometres drive. Or that the steering wheel
in some cases works just the other way: the car turns to
the left when we steered to the right… Is that normal?
In Evo, we expect the developers to deliver zero-defect
results for the final validation, so that the testers just
have to check that everything works OK, as required.
Although software developers usually start laughing by
this very idea, we are very serious about this. The aim of
testing earlier deliveries of Evo cycles is not just testing
whether it “works”. Also, testing is not to make life
difficult for the developers. In Evo, the software devel-
opers ask the testers to help them to find out how far
the developers are from the capability of delivering a
defect free product at, or before final validation
(Figure 11).

8. CHANGE REQUESTS AND PROBLEM REPORTS

Change Requests (CR) are requested changes in the
requirements. Problems Reports (PR) report things
found wrong (defects), which we should have done right
in the first place. Newly Defined Tasks (NT) are tasks we
forgot to define. If any of these are encountered, we

never start just changing, repairing, or doing the new
task. We work only on defined tasks, of which the effort
has been estimated and the priority defined. All tasks are
listed on the list of candidate tasks in order of priority.
Any CR, PR or NT is first collected in a database. This
could be anything between a real database application
and a notebook. Regularly, the database is analysed by a
Change Control Board (CCB). This could be anything
between a very formal group of selected people, who
can and must analyse the issues (CRs, PRs and NTs), and
an informal group of e.g. the project manager and a
team member, who check the database and decide what
to do. The CCB can decide to ignore or postpone some
issues, to define a new task immediately or to define an
analysis task first (Figure 12). In an analysis task, the con-
sequences of the issue are first analysed and an advice is
documented about what to do and what the implications
are. Any task generated in this process is put on the list
of candidate tasks, estimated and prioritised. And only
when an existing or new task appears at the top of the
candidate list, it will be worked on.

9. TOOLS

Special tools may only be used when we know and un-
derstand the right methods. In actual projects, we have
used MS Excel as an easy notepad during interactive
sessions with a LCD projector showing what happens on
this notepad in real time. When tasks have been defined,

prioritized
prioritized

Past Tasks John
This week John
Still to do John

Past Tasks Bill
This week Bill
Still to do Bill

Past Tasks Sue
This week Sue
Still to do Sue

Task 1
Task 2
Task 3

Task n
Task n+1
Task n+2

Task m
Task m+1
Task m+2

Value 1
Value 2
Value 3

Value n
Value n+1
Value n+2

Value m
Value m+1
Value m+2

Delivery 1
Delivery 2
Delivery 3

Delivery n
Delivery n+1
Delivery n+2

requirements

prioritized

pr
io

rit
iz

ed
pr

io
rit

iz
ed

pr
io

rit
iz

ed

ID Task Dur
1

2

3 task 1 10 h

4 task 2 20 h

5 task 3 10 h

6 task 4 20 h

7 task 5 10 h

8 task 6 10 h

9 task 7 20 h

10 task 8 10 h

11 task 9 20 h

12 task 10 10 h

13 task 11 10 h

14 task 12 20 h

15 task 13 10 h

16 task 14 20 h

17 task 15 10 h

18 task 16 20 h

19 task 17 10 h

T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M
'01 26 Jun '01 03 Jul '01 10 Jul '01 17 Jul '01 24 Jul '01 31 Jul '01ID Task Dur

1

2 John 126 26 h

3 task 6 12 h

4 task 16 14 h

5 John ToDo 80 h

6 task 2 20 h

7 task 8 10 h

8 task 13 10 h

9 task 1 10 h

10 task 7 20 h

11 task 17 10 h

12 Bill 126 26 h

13 task 14 8 h

14 task 17 14 h

15 task 18 4 h

16 Bill ToDo 60 h

17 task 9 20 h

18 task 4 20 h

19 task 12 13 h

20 task 16 7 h

21 Sue 126 26 h

22 task 3 10 h

23 task 19 16 h

24 Sue ToDo 30 h

25 task 15 10 h

26 task 10 10 h

27 task 5 10 h

28 Candidates list 25,6 h

29 task 11 10 h

30 task 20 5,2 h

31 task 21 5,2 h

32 task 22 5,2 h

John 126

John ToDo

Bill 126

Bill ToDo

Sue 126

Sue ToDo

Candidates list

F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S
25 Jun '01 02 Jul '01 09 Jul '01 16 Jul '01 23 Jul '01 30 Jul '01

Figure 13: Relations between requirements, stakeholder values, deliveries, and different views on tasks.

Niels Malotaux: Evolutionary Development Methods 12

MS Project can be used as a spreadsheet to keep track of
the tasks per person, while automatically generating a
time-line in the Gantt-chart view (Figure 13, top left). This
time-line tells people, including management, more than
textual planning. It proved possible to let MS Project use
weeks of 26 hours and days of 5.2 hours, so that
durations could be entered in real effort while the
time-line shows correct lead-time days.
There is a relation between requirements, stakeholder
values, deliveries and tasks (Figure 13). We even want to
have different views on the list of tasks, like a list of
prioritised candidate tasks of the whole project and lists
of prioritised tasks per developer. This calls for the use of
a relational database, to organise the relations between
requirements, values, deliveries and tasks and the
different views. Currently, such a database has not been
made and the project manager has to keep the
consistency of the relations manually. This is some extra
work. However, in the beginning it helps the project
manager knowing what he is doing.
Recently we did introduce an Evo Task Administration or
ETA tool [18] in which the Tasks can be administered and
related to deliveries and projects. This tool provides a
much easier way for administering Tasks than the Excel
“notepad”. It is being used and optimized in many
projects since beginning 2003. The tool is using a
MS-Access database. A conversion of the tool to Internet
browser technology is in the works. This will make the
tool independent of the availability of MS-Access.
Still, we are somewhat reluctant to introducing the ETA
tool. In some projects, where people are not yet aware
of the Evo details, people may start working for the tool
instead of letting the tool work for them. This may
distract them from learning the benefits of Evo, to make
them more productive, instead of giving them more
work to do.
Important before selecting any tool is to know what we
want to accomplish and why and how. Only then we can
check whether the tool could save time and bureaucracy
rather that costing time and bureaucracy.

10. CONCLUSION

We described issues that are addressed by the Evo
methods and the way we organise Evo projects. By using
these methods in actual projects we find:

• Faster results
Evo projects deliver better results in 30% shorter time
than otherwise. Note: 30% shorter than what by
conventional methods would have been achieved,
which may be longer than initially hoped for.
Although this 30% is not scientifically proven, it is
rather plausible by considering that we constantly
check whether we are doing the right things in the
right order to the right level of detail for that moment.
This means that any other process is always less

efficient. Most processes (even if you don’t know
which process you follow, you are following an intui-
tive ad hoc process) allow much work to be done
incorrectly and then repaired, as well as unnecessary
work. Most developers admit that they use more than
half of the total project time on debugging. That is
repairing things they did wrong the first time. In Evo,
most “bugs” are prevented.

• Better quality
We define quality as (Crosby [4]) “Conformance to
Requirements” (how else can we design for quality
and measure quality). In Evo we constantly reconsider
the validity of the requirements and our
assumptions and make sure that we deliver the most
important requirements first. Thus the result will be
at least as good as what is delivered with the less rig-
orous approach we encounter in other approaches.

• Less stressed developers
In conventional projects, where it is normal that tasks
are not completed in time, developers constantly feel
that they fail. This is demotivating. In Evo projects,
developers succeed regularly and see regularly real
results of their work. People enjoy success. It moti-
vates greatly. And because motivation is the motor of
productivity, the productivity soars. This is what we
see happening within two weeks in Evo projects:
People get relaxed, happy, smiling again, while pro-
ducing more.

• Happy customers
Customers enjoy getting early deliveries and
producing regular feedback. They know that they
have difficulty in specifying what they really need. By
showing them early deliveries and being responsive
to their requirements changes, they feel that we
know what we are doing. In other developments,
they are constantly anxious about the result, which
they get only at the end, while experience tells them
that the first results are usually not OK and too late.
Now they get actual results even much earlier. They
start trusting our predictions. And they get a choice
of time to market because we deliver complete,
functioning results, with growing completeness of
functions and qualities, well before the deadline. This
has never happened before.

• More profits
If we use less time to deliver better quality in a
predictable way, we save a lot of money, while we
can earn more money with the result. Combined, we
make a lot more profit.

In short, although Brooks predicted a long time ago that
“There is no silver bullet” [2], we found that the methods
presented, which are based on ideas practiced even
before the “silver bullet” article, do seem to be a “magic
bullet” because of the remarkable results obtained.

www.malotaux.nl/booklets 13

ACKNOWLEDGEMENT

A lot (but not all) of the experience with the approach
described in this booklet has originally been gained at
Philips Remote Control Systems, Leuven, Belgium.
In a symbiotic cooperation with the group leader,
Bart Vanderbeke, the approach has been introduced in
all software projects of his team. Using short discuss-
implement-check-act improvement cycles during a period
of 8 months, the approach led to a visibly better man-
ageability and an increased comfort-level for the team
members, as well as for the product managers.
We would like to thank the team members and product
managers for their contribution to the results.

REFERENCES

[1] H.D. Mills: Top-Down Programming in Large Sys-
tems. In Debugging Techniques in Large Systems.
Ed. R. Ruskin, Englewood Cliffs, NJ: Prentice Hall,
1971.

[2] F.P. Brooks, Jr.: No Silver Bullet: essence and Acci-
dents of Software Engineering. In Computer vol 20,
no.4 (April 1987): 10-19.

[3] T. Gilb: Principles of Software Engineering
Management. Addison-Wesley Pub Co, 1988, ISBN:
0201192462.

[4] P.B. Crosby: Quality Is Still Free. McGraw-Hill, 1996.
4th edition ISBN 0070145326

[5] T. Gilb: manuscript: Evo: The Evolutionary Project
Managers Handbook, 1997,
http://www.gilb.com/Download/EvoBook.pdf

[6] S.J.Prowell, C.J.Trammell, R.C.Linger, J.H.Poore:

Cleanroom Software Engineering, Technology and
process. Addison-Wesley, 1999, ISBN 0201854805.

[7] T. Gilb: manuscript: Impact Estimation Tables: Un-
derstanding Complex Technology Quantatively,
1997, http://www.gilb.com/Download/IENV97.ZIP

[8] N.R. Malotaux: TaskSheet, 2000
www.malotaux.eu/nrm/pdf/TaskSheet.dot

[9] F.P. Brooks, Jr.: The mythical man-month.
Addison-Wesley, 1975, ISBN 0201006502. Reprint
1995, ISBN 0201835959.

[10] C. Northcote Parkinson: Parkinsons Law. Buccaneer
Books, 1996, ISBN 1568490151.

[11] N.R. Malotaux: Powerpoint slides: Evolutionary
Delivery (see www.malotaux.nl/downloads for
newer versions)

[12] E. Dijkstra: Paper: Programming Considered as a
Human Activity, 1965. Reprint in Classics in Software
Engineering. Yourdon Press, 1979, ISBN 0917072146.

[13] W. A. Shewhart: Statistical Method from the View-
point of Quality Control. Dover Publications, 1986.
ISBN 0486652327.

[14] W.E. Deming: Out of the Crisis. MIT, 1986, ISBN
0911379010.

[15] Kent Beck: Extreme Programming Explained,
Addison Wesley, 1999, ISBN 0201616416.

[16] www.gilb.com
[17] www.extremeprogramming.org
[18] www.malotaux.nl/?id=downloads#ETA

http://www.gilb.com/Download/EvoBook.pdf
http://www.gilb.com/Download/IENV97.ZIP
http://www.extremeprogramming.org/

Niels Malotaux

How to deliver Quality On Time in Software Development and Systems Engineering Projects

In this booklet, we show methods and techniques, which enable software and systems developers and management to
successfully managing projects within the constraints of cost, schedule, functionality and quality. These methods are taught
and coached in actual development projects with remarkable results: typically, projects can be done in 30% shorter time
than before.
While software development results were usually delivered late, the delays in other disciplines (like hardware and mechan-
ical development) seemed to be non-existent. Where we have taught Software Development to deliver Quality On Time
(the right things at the right time and within budget), the delays in the other disciplines become exposed. The methods and
techniques described in this booklet are obviously not limited to just software development. For those projects where de-
livering Quality On Time is important, it is about time that we are going to apply the techniques at the Systems Develop-
ment level. Therefore the next target for Evolutionary Development Methods will be Systems Engineering.

Note that some of the contents of this booklet is superseded by newer booklets (see below). However, the basic ideas still hold
and are interesting enough to take notice of.

Niels Malotaux is an independent Project Coach specializing in optimizing project performance. Since 1974 he designed
electronic hardware and software systems, at Delft University, in the Dutch Army, at Philips Electronics and 20 years leading
his own systems design company. Since 1998 he devotes his expertise to helping projects to deliver Quality On Time: deliv-
ering what the customer needs, when he needs it, to enable customer success. To this effect, Niels developed an approach
for effectively teaching Evolutionary Project Management (Evo) Methods, Requirements Engineering, and Review and
Inspection techniques. By now (~2018) he taught and coached over 400 projects in 40+ organizations in the Netherlands,
Belgium, China, Germany, India, Ireland, Israel, Japan, Romania, South Africa, Serbia, the UK, and the US, which led to a
wealth of experience in which approaches work better and which work less in the practice of real projects. He is a frequent
speaker at conferences, see www.malotaux.nl/conferences

Find more booklets at: www.malotaux.nl/booklets
1. Evolutionary Project Management Methods (this booklet)
2. How Quality is Assured by Evolutionary Methods
3. Optimizing the Contribution of Testing to Project Success
3a. Optimizing Quality Assurance for Better Results (same as 3, but now for non-software projects)
4. Controlling Project Risk by Design
5. TimeLine: Getting and Keeping Control over your Project
6. Recognizing and Understanding Human Behaviour
7. Evolutionary Planning (similar to booklet#5 TimeLine, but other order and added predictability)
8. Help! We have a QA problem!
ETA: Evo Task Administration tool - www.malotaux.nl/?id=downloads#ETA

First published: Dec 2001 - Version 1.6 (few typos): Nov 2018

N R Malotaux
Consultancy
Niels R. Malotaux
phone +31-655 753 604
mail niels@malotaux.nl
web www.malotaux.nl

	1. Introduction
	2. History
	3. Issues Addressed by Evo
	A. Requirements Paradoxes
	B. Very short cycles
	C. Rapid and frequent feedback
	D. Time Boxing
	E. Estimation, planning and tracking
	F. Difference between effort and lead-time
	G. Commitment
	H. Risks
	I. Team meetings
	J. Magic words

	4. How do we use Evo in projects
	A. Evo day
	B. Last day of the cycle 0F
	C. Team meeting

	5. Check lists
	A. Task prioritisation criteria
	B. Delivery prioritisation criteria
	C. Task conclusion criteria

	6. Introducing Evo in new projects
	7. Testing with Evo
	8. Change requests and Problem reports
	9. Tools
	10. Conclusion
	Acknowledgement
	References

