
A colleague found this remark in one of my tutorials: "In my experience the ’zero defects’ 
attitude results in 50% less defects almost overnight" and asked me to explain this to a 
project team he was coaching. I thought that my experience with Zero Defects might be 
interesting for more people than just this project team.



Niels Malotaux

Graduated Electronics at Delft University of Technology in 1974

Army service at the Dutch Laboratory for Electronic Developments for the Armed Forces, 
designing computer systems

Philips Electronics – Application support for microcomputer systems design (1976-1980)

Malotaux - Electronic Systems Design - : developing electronic systems for clients 
products (1980-1998)

Now: N R Malotaux - Consultancy: coaching projects to deliver successfully and much 
faster (1998- )



As many people think that even talking about ZD is useless, I'd like first to discuss some questions 
with the audience. 



A University PhD student showed this picture as being the official development process at a well 
known large company in Holland. I’ve seen a similar picture in a presentation from a well known 
large software company in the US.

The 2nd phase usually takes 50(±30)% of the total time. How can we call it “Code Complete” if it’s 
full of issues? 

This is a very bad and costly process. However, because it’s so widely practiced, many people 
think that this is how it should be. They should know better. Probably deficiency of the 
educational system, because the solution is known for decades.



When I actively started using the Zero Defects (ZD) concept in software projects, defects made 
decreased by at least 50% almost immediately. It took about 2 weeks before the developers 
understood that I was dead serious about it. Then the testers came to me saying: “Niels, 
something weird is going on: we don’t find issues anymore! It simply works!” I said: “Isn't that 
exactly what we want to see? Now testing is becoming a real challenge, namely proving that there 
are no errors.”

So, even if you don’t believe that this can be true, if two people (Crosby and me) did it and 
showed a huge decrease of errors made, only by adopting the attitude, isn’t it at least worth a try, 
especially if you realize that about half of most projects is spent on finding and fixing defects. 
That’s a huge budget. Any savings on that is probably well worth trying.
"No Hassle" proved to be easier to use than ZD: Don't cause a hassle. No hassle to yourself, to 
your peers, to your organization, to your customers.

.



Philip Crosby defined the four 'Absolutes of Quality'. When I started as a coach in a 
company recently, I gave his book "Quality without tears" to the CEO for homework: 
"Next week I'll check that you read it!". He did and it immediately had an impact on his 
behaviour. He delayed a major release to first get rid of the hassles that we were going to 
deliver to the costumers. He also calculated the 'Price of Non-Conformance' (PONC), to 
be at least a quarter of a million Euro in the past year.
Phil Crosby's organization later added a 5th Absolute: Customer Success. I agree 
completely. But I don't agree with them adding "… not customer satisfaction". After all, 
the customer should be successful, but satisfied as well, as we'll see on the next slide.



This is to me the top-level requirement for any project or any work we do.

• The customer is the entity that orders and pays. The customer, however, in many cases doesn't 
use the result of our project himself. He gets the benefit through the users of the result.

• What the customer says he wants is usually not what he really needs

• The time he needs it may be earlier or later than he says

• If the customer isn't satisfied, he doesn't want to pay

• If the customer isn't successful with what we deliver, he cannot pay

• If he's not more successful, why would he pay?

• What the customer wants, he cannot afford. If we try to satisfy all customer's wishes, we'll 
probably fail from the beginning. We can do great things, given unlimited time and money. But 
neither the customer nor we have unlimited time and money. Therefore: The requirements are 
what the Stakeholders require, but for a project: the requirements are what the project is 
planning to satisfy.

• The customer is king, but we aren't slaves. Both sides should benefit and be happy with the 
result. 

• We will get the best result in the shortest possible time, but not shorter than possible. The 
impossible takes too much time.



Years ago I suggested to add a box for the ‘Root Cause’ and for the ‘Root Cause Suggested 
Solution’ in a bug-tracking system. When I later checked how people were using this, I found that 
in the Root Cause box they documented the cause of the bug and in the Root Cause Suggested 
Solution box the suggestion how to repair the bug.

Apparently, they didn't see the difference between ‘Cause’ and ‘Root Cause’:
• The Cause of a defect is the error that caused the defect
• The Root Cause is what caused us to make the error that caused the defect

In another project I asked the project manager what they do with the results of the code reviews. 
"People repair the bugs" he said. I asked: "Don't you do Root Cause Analysis, in order to learn how 
to prevent this type of error from now on?" The response was: "On every issue we found??? We 
have no time for that!"

Apparently they have no time to learn to prevent, and rather spend a lot of time to find and fix(?). 
No wonder that projects take more time than they hoped for.



Many people equate QA with Testing. Testing, however, is just one of the quality measuring 
instruments of QA and hence only a small part of QA. So, let's shortly discuss what QA actually is 
and who the customer of QA is. 



I experienced that to most testers this quote from Deming is quite a paradigm shift and usually 
comes as a shock. But usually it’s a shock of recognition! It will change their attitude for the better 
forever.

Now let's see how we can optimize our contribution as consultants to development.



In the Agile world, the Waterfall and derived models are often seen as bad. However, these 
models are still valid for every sprint. After all, we have to determine what value we should deliver 
(requirement), how we can and are going to realize it (design), how we implement it (coding), 
integrate it, test it, and deliver. For QA the challenge is not to test only the code and find bugs, but 
to help development to prevent the bugs in the first place. By reviewing the requirement, the 
design and the implementation, so that the final test can conclude that it simply works as it is 
supposed to work.
The V-model is actually a folded Waterfall, where the most expensive issues (requirements issues) 
are found at the end. The W-model shows that we should find the issues once they are created, 
rather than when they cause trouble later. All models are wrong, some are useful. If they're 
useful, we may use them.

The requirement, the design, the code: they're all different manifestations of the same product. 
However, only the code can be run to check that it ‘physically’ does what it is supposed to do. 
That's what we usually call 'testing'. Before we have code, there are other techniques to check 
that the product is right, like Modelling, Scenarios, Reviewing, Inspecting. In these areas QA can 
prove its value as well.



Let's discuss some examples of techniques that helped me and others to move towards Zero 
Defect deliveries. 



There are many techniques known to approach ZD faster. One of them is what I call the 
DesignLog.

When I started my career at Philips Electronics in 1976 (at the same time Philips started to sell 
its first microprocessor), we got a notebook to note our thoughts, experiments and findings 
chronologically. It was difficult, however, to retrieve an idea I had several weeks before, 
because it was buried in many pages of hardly readable handwriting. 

Nowadays we can use a word processor, add pictures, organize by subject rather than 
chronologically, and search through the text. We log our thoughts in chapters, which start 
with what we have to achieve (requirement), end with how we think we will achieve it 
(implementation specification), with in between the reasoning, assumptions, questions and 
answers, possible solutions, decision criteria and the selected solution (design).

If I see design documentation, this usually only shows what people decided to implement, 
rather than also recording why and how they arrived at this decision.

The DesignLog should be reviewed to find possible issues before we start the 
implementation. Because the choices and design are well documented, in the maintenance 
phase (often a the largest portion of the cost of deployment of software!) minimum time is 
lost. One of the requirements for the DesignLog is: "If someone has to change something in 
the software one year later, he should be up and running within one or at most two days."

When QA asks development to review the DesignLog, if there is one they can review and also 
use this information to define and optimize their test-cases. If there is none, this is a good 
time to introduce the concept. See next slide.



This case happened just a few months ago, see the text on the slide.

It's always nice to experience that the techniques that worked for me and for many others in the 
past, still work today. Many old techniques never get out of date.

We see, however, that it's not so easy to convince people to do something that seems counter-
intuitive: going back to the design rather than grinding on in code and leaving a lot of dangerous 
scars in the process.

Delivering quality often needs counter-intuitive measures. 

On the next slide we’ll see how a review even caused the whole design to be changed!



James explained me later more interesting details of this case:

• There were two features required for a release, one of which was on the critical path and placed the delivery at 
risk

• I saw an "opportunity" for a Design - "prevention, rather than fixing" and also an opportunity to encourage 
documentation

• Because Louise struggled a bit with the design (not many people in software have been educated in how to 
design), we Timeboxed the initial draft

• I emailed it to two colleagues to review: "please review, assuming you will code-review the implementation, and 
based on this DesignLog you know what the implementation you will have to code-review will be"

• Louise emailed me in a panic that if she knew it would be reviewed, she would have written something different. 
I said - "no, do nothing yet - review first and then update with your new understanding and feedback. Reason: 
the next draft will be better."

• For the next review, another colleague who was not previously available was invited.
At the meeting where I expected the DesignLog to be approved with minor modifications and to get estimates 
for the work involved, the Design was totally reworked

• We agreed the new Design was better than the original ideas

• Actually, two features were delivered and deployed 

• The one that was designed, reviewed, coded, and code reviewed had no issues after deployment

• Another one, which was done in the ‘traditional’ way, was the source of quite a few defects

• In summary, this success has proved instrumental in buy-in for DesignLogs which are now embedded in the 
development process

Using Inspection (Review) in various ways:

• The review caused them not to implement a bad solution

• If they would have implemented the original solution, they probably wouldn’t have found out until much later

• The whole process allowed them to deliver well before the deadline rather than after.



If I see documentation at all, it is usually just text. Sometimes a lot of text. One of my mantra's is: 
"Where are the pictures?"

This and the next slide are an example of some design I made recently (anonymised). You don't 
have to check the text and what it actually does. It's just to show some examples of concisely 
documenting functionality in a way most people, with a bit of understanding, can follow 
immediately.

This slide shows a design of the communication between some controller and a remote user 
interface. It was documented in a 47 page document by an 'architect'. 47 pages of interface 
description is almost impossible to oversee by humans, hence it contained a lot of inconsistencies 
and the people who had to implement it actually ignored it.

Once I made this one page overview, we could discuss, ease out the inconsistencies, make 
decisions, agree, and everyone knew exactly what to do. Conclusion: just documenting isn't 
enough. We have to learn how to document for usefulness.

QA can ask a developer to explain how the interface should work. If the developer only shows 
code to review, we know we have a problem. If the QA person doesn't understand the 
explanation, the explanation apparently isn't clear enough, which is a big risk for the quality of the 
result. If it's only text, it won't work either.



This is how I implemented the communication design based on my discussions with the suppliers 
of the remote user interface. The design was made to be reviewed and then it could readily be 
implemented based on this design. If I see how much I moved and reshuffled before I was content 
that this was right, I cannot imagine how this could be done properly in code without having this 
design. Like in the Cleanroom Approach to Software Development I designed down to a level of 
some 3 lines of code per design element. Sorry, I have no time now to go into detail, but the 
Cleanroom Approach routinely delivered an order of magnitude less defects in shorter time. 
Making changes in the code is not allowed before we have updated the design. The code should 
always be derived from the current design. Reviews of code should always check that the code 
does what the design says

These were just examples. The challenge is every time again to find the right representation that is 
easiest to comprehend and review.

Of course the projects the audience is working in usually do these things properly. But I still see 
too often that the 'design' is only in the mind of the developer who writes the code, or just a 
rough sketch, with devastating effects in software quality and delivery time.

If as a QA person you encounter these effects, think what you should do about it.



Many people do reviews, but have they been trained in reviewing and what is the best way to 
optimize the effectiveness.

Don’t waste your time on reviewing code if you haven’t reviewed the design. After the review of 
the design, the code will be changed anyway, so what’s the point of first reviewing the code?

If there is only code and no design, reconstruct the design. If you work only in code, producing 
bugs is to be expected. Bugs shouldn’t be there. Hence, don’t work only in code.



Can you really see structure in code?
If you work only in code, producing bugs is to be expected. Bugs shouldn’t be there. 
Hence, don’t work only in code.



If we don’t have a proper design, the developer should still have a model of the system in his 
mind. A problem is that the model in the mind is fading, so we have to continuously refresh it. 
That’s why you see developers moving and switching screens all the time, trying to keep the 
model in their mind current. At the same time they should in their mind correlate the model in 
their mind with the code they should produce or modify,.

If they would get the model of the system out of their mind e.g. on paper, or whiteboard, they 
don’t have to continuously refresh it, they quickly see flaws in the design, others can even watch it 
and see possible issues, and they have their whole mind available to do the thinking and 
correlating.



Simple example of correlation between a state diagram, the derived flows, and the resulting code.

Can you see what’s happening in the code? I can’t.

Can you see what’s happening in the flow diagram? A bit better.

Can you see coherence in the state diagram? I can. And I easily can reason with this with anyone, 
even the CEO.

It took me quite some time to compose the state diagram. But then the flows and the code were 
don quite straight-forward and had no errors whatsoever.

The product worked for years without any problem.

It also adheres the the requirement: “After a year I should be able to add or change anything in 
this system without introducing any issues, being up and running within a day”.



I came in an project of some 70 people, with 3 Scrum teams of some 12 people each. We know 12 
is too many, but that's another story.

At a Sprint Planning meeting I asked one of the teams: "What would be the measure of success 
for this Sprint?"

They looked at me: "What a strange question. We're Agile, so we deliver working software. Don't 
you know?"

I asked: "Shouldn't we have a measure of success, to know that we really did a good job?" and 
suggested: "No questions, No Issues". That's easy to measure: one question or one issue and we 
know we failed. No question and no issue and we know we were successful.

Their first reaction was: That's impossible! Surely there will be some questions when we deliver 
and there are always some issues.

I suggested: "You find out how to do it. It's just a simple requirement: "No questions, No Issues". 

Interestingly, they immediately started thinking how they could deliver according to this 
requirement.

For example, someone thought: "Ah. Perhaps halfway the Sprint we ask someone to check it out 
and to see whether he would have any questions?" I said: "You're on the right track. Just find out 
how to do it. The requirement is simple.”

Actually, I didn't expect them to be successful in this first Sprint, perhaps after a few. Surprisingly, 
they were successful.



Scrum reviews usually only demo.

How about using the advice as shown here.

Is this what you do?

If not, why not?





This is my suggestion I gave the architect and the project manager to consider as Delivery 
Strategy.



This case was an organization with extraordinary bright people. In many projects we have to 
explain things over and over again, but in this project people needed only half a word to 
understand and do things better.
James (their new QA person) told me this story. He asked them to prepare well, design properly, 
and then do the coding. The result: "It's exactly as expected, which is absolutely unprecedented for 
a first delivery."

He suggested it, they did it, and it worked. It's great for a QA person to work in such a fertile 
environment!



The basic approach.

Some people simply call this: ‘engineering’.



So, what’s in it for QA?



What will you do next?



If in doubt, let’s discuss.

To you it may be theory.

To me it’s reality.


