
1BCS Dec 2016

Niels Malotaux

+31 655 753 604 niels@malotaux.nl www.malotaux.nl

Planning for
Quality Delivery
Producing even more
business value in less time

www.malotaux.nl/conferences

2BCS Dec 2016

Niels Malotaux

• Team and Organizational Coach
• Expert in helping optimizing performance

• Helping projects and organizations very quickly to become
• More effective – doing the right things better
• More efficient – doing the right things better in less time
• Predictable – delivering as predicted

• Helping teams to shine

3BCS Dec 2016

Schedule, we’ll try to keep

4BCS Dec 2016

Who is Who and Who is doing what ?

• Developer ?
• Tester ?
• QA ?
• Architect ?
• Product Owner ?
• Scrum Master ?
• Team Member ?
• Customer ?
• Manager ?
• Consultant ?
• Coach ?

Who’s responsible ?

Everyone in the team !

5BCS Dec 2016

Homework

• The Goal of your current work or project
• The Definition of Success
• The most important stakeholder (Who is waiting for it?)

• The most important requirement for this stakeholder (What is he waiting for?)

• How much value improvement does this stakeholder expect (3 or 7?)

• Any deadlines? (No deadlines: it will take longer)

• What you and your team should and can have achieved in the coming 10
weeks
(Will you succeed? If yes: great. If not: what could you do about it? - Failure is not an option!)

• What you think you should and can do the coming week to achieve what
you’re supposed to achieve
(How do you make sure that by the end of the week all of this will be done)

• Any issues you expect with the above or otherwise with your work or
project

6BCS Dec 2016

Is there a problem ?

What made you decide to come to this workshop ?

7BCS Dec 2016

Are you working in projects ?

• What is a project ?
• Clear start
• Clear end
• Something special in between

• ETVX
• Entry – Task – Verify – Exit

• Every project should improve something,
otherwise it’s waste

• Is it clear what your project (or work) is improving ?

8BCS Dec 2016

Are your projects successful ?

• Delivering Quality On Time ?
• The Right Result at the Right Time ?

9BCS Dec 2016

Delivering the right result

• What is the right result ?
• How do we know ?
• Is it really ?

*

10BCS Dec 2016

Real Requirements

• Heathrow Terminal 5: “Great success !”
• Normal people aren’t interested in the technical details of a terminal
• They only want to check-in their luggage as easily as possible

and
• Get their luggage back as quickly as possible in acceptable condition

at their destination
• They didn’t

• One of the problems is to determine
what the project (or our work in general) really is about

• What are the ‘real’ requirements ?

• The essence is not what but how well

11BCS Dec 2016

Is being on time important ?

• What is ‘on time’ ?

• Will we be on time ?

• If yes: How do we know ?
• If no: Why ?
• Failure is not an option:

• What can we do about it ?

12BCS Dec 2016

What is the cost of one day of (unnecessary) delay ?

• What is the cost of the project per day ?
• Do you know how much you cost per day ?

Note: that’s not what you get !

• If you don’t know the benefit, assume 10 times the cost
• How can you make decisions, if you don’t know ?

• No need for exact numbers - it’ll be a lot anyway

• Do you know the benefit of your projects ?
• Do you know the penalty for delay ?
• Who is paying for the extra time ?

13BCS Dec 2016

The Importance of Time

Return on Investment (ROI)
+ Benefit of doing - huge (otherwise we should do an other project)
– Cost of doing - project cost, usually minor compared with other costs
– Cost of being late - lost benefit
– Cost of doing nothing yet - every day we start later, we finish later

doing nothing doing benefit

idea start done

This is why project time is usually
more important than project budget

14BCS Dec 2016

Delivery time is a Requirement

• Delivery Time is a Requirement, like all other Requirements

• How come most projects are late ???

• Apparently all other Requirements
are more important than Delivery Time

• Are they really ?

• How about your current project ?

• Can Agile be late ?

• Do you have no deadlines ?

15BCS Dec 2016

Fallacy of ‘all’ requirements

• “We’re done when all requirements are implemented”

• Is delivery time included ? (Required number of bugs specified ?)

• Requirements are always contradictory

• Design is to find the optimum compromise between the
conflicting requirements

• Do we really have focus on the real requirements ?

• Did the customers define real requirements ?
• Usually even less trained in defining real requirements than we are

• What we think we have to do should fit the available time

• Instead of letting it happen, better decide how it will happen

16BCS Dec 2016

We’re Agile ! Requirements will ‘emerge’ !

• The real requirements don’t change
• Our perception of the solution may change

17BCS Dec 2016

The Cost of Time

• We can save 4 months by investing £200k

• It’s a nicer solution - Let’s do 2 weeks more research on the benefits

• What are the expected revenues when all is done?

• So 2 weeks extra doesn’t cost £10k. It costs £16M/26 = £620k

• And saving 4 months brings £16M/3 = £5M extra

 Invest that £200k NOW and don’t waste time !

-1
Start

2 3 4 5 6 7 8 9 101
End

4 months = £160k

10 months x 4 people x £500/day = £400k

1 month x 2 people x £500/day = £ 20k

→ £16M/yr (£1.3M/mnd)

→ “That’s too much !”

2 week x 2 people x £500/day = £10k

18BCS Dec 2016

Did anyone tell you to go faster ?

• Produce more ! → bad quality → produce less

• Produce quality ! → produce more

Quick delivery of a solution that doesn’t work means no delivery

The problem is: it’s counter-intuitive

19BCS Dec 2016

4 week project

25% 25% 25% 25%

10%

10% 10%

10% 10% 10%

90%

80%

70%

20BCS Dec 2016

Causes of Delay

• Some typical causes of delay are:
• Developing the wrong things
• Unclear requirements
• Misunderstandings
• No feedback from stakeholders
• No adequate planning
• No adequate communication
• Doing unnecessary things
• Doing things less cleverly
• Waiting (before and during the project)

• Excuses, excuses: it’s always “them”. How about “us” ?

• What are causes of these causes ? (use 5 times ‘Why ?’)

• Changing requirements
• Doing things over
• Indecisiveness
• Suppliers
• Quality of suppliers results
• No Sense of Urgency
• Hobbying
• Political ploys
• Boss is always right (culture)

21BCS Dec 2016

Causes of causes

• Management
• No Sense of Urgency
• Uncertainty
• Perceived weakness
• Fear of Failure
• Ignorance
• Incompetence
• Politics

Intuition often points us in the wrong direction

• Indifference
• Perception
• Lack of time
• Not a Zero Defects attitude
• No techniques offered
• No empowerment
• Lack of Discipline
• Intuition

22BCS Dec 2016

The problem

• Many projects don’t deliver the right Results
• Many projects deliver late

or, more positively:

• I want my project to be more successful
• In shorter time

• Delivering the Right Result at the Right Time

23BCS Dec 2016

Cobb's Paradox Martin Cobb - 1989
Treasury Board of Canada Secretariat

Ottawa, Canada

• We know why projects fail

• We know how to prevent their failure

• So why do they still fail ?

• How about your project ?
Did you deliver the right result at the right time ?

24BCS Dec 2016

The problems in projects are not the real problem,
the real problem is that we don’t do something about it

25BCS Dec 2016

The challenge

• Getting and keeping the project under control
• Never to be late
• If we are late, we failed
• No excuses
• Not stealing from our customer’s (boss’) purse
• The only justifiable cost is the cost of

doing the right things at the right time
• The rest is waste
• Who would enjoy producing waste ?

26BCS Dec 2016

Goals for these two days

• Knowing how you can optimize the Results
of your daily work

• How to optimize the Results of your projects
• Creating a desire to start using this knowledge immediately

Warning:

After this workshop you don’t have an excuse any more !
But you shouldn’t need one either

27BCS Dec 2016

Universal Goal

• Delivering the Right Result at the Right Time,
wasting as little time as possible (= efficiently)

• Providing the customer with
• what he needs
• at the time he needs it
• to be satisfied
• to be more successful than he was without it

• Constrained by (win - win)
• what the customer can afford
• what we mutually beneficially and satisfactorily can deliver
• in a reasonable period of time

28BCS Dec 2016

Evo Project Planning

Evolutionary Project Management
elements (Evo) – Tom Gilb

• Plan-Do-Check-Act
• The powerful ingredient for success

• Business Case
• Why we are going to improve what

• Requirements Engineering
• What we are going to improve and what not
• How much we will improve: quantification

• Architecture and Design
• Selecting the optimum compromise for the conflicting requirements

• Early Review & Inspection
• Measuring quality while doing, learning to prevent doing the wrong things

• Weekly TaskCycle
• Short term planning
• Optimizing estimation
• Promising what we can achieve
• Living up to our promises

• Bi-weekly DeliveryCycle
• Optimizing the requirements and checking the assumptions
• Soliciting feedback by delivering Real Results to eagerly waiting Stakeholders

• TimeLine
• Getting and keeping control of Time: Predicting the future
• Feeding program/portfolio/resource management

Zero
Defects
Attitude

29BCS Dec 2016

Exercise: How about your current project ?

• Who is your customer ?
• What does he need ?
• When does he need it ?
• Will he be happy with it ?
• Will he be more successful ?
• Can the customer afford it ?
• Is it win-win ?

• What did you find out during this exercise ?

• Providing the customer with
• what he needs
• at the time he needs it
• to be satisfied
• to be more successful than before

• Constrained by (win - win)
• what the customer can afford
• what we mutually beneficially and

satisfactorily can deliver
• in a reasonable period of time

30BCS Dec 2016

Estimation
Exercise

31BCS Dec 2016

time

pr
ob

ab
ili

ty

Lead time

32BCS Dec 2016

Estimation Exercise

Are you an optimistic or a realistic estimator?

Let’s find out !

Project:
Multiplying two numbers of 4 figures

How many seconds would you need to complete this Project?

0000
0000 x

00000000

Example

33BCS Dec 2016

34BCS Dec 2016

Is this what you did?

35BCS Dec 2016

Defect rate

• Before test ?

• After test ?

36BCS Dec 2016

Alternative Design (how to solve the requirement)

37BCS Dec 2016

Another alternative design

38BCS Dec 2016

What was the real requirement ?

Assumptions, assumptions ...

Better assume that many assumptions are wrong.

Check !

39BCS Dec 2016

Elements in the exercise

• Estimation, optimistic / realistic
• Interrupts
• Test, test strategy
• Defect-rate
• Design, design strategy
• Requirements
• Real Requirements
• Assumptions

40BCS Dec 2016

Human Behavior

41BCS Dec 2016

Human Behavior

• Systems are conceived, designed, implemented, maintained, used, and
tolerated (or not) by people

• People react quite predictably

• However, often differently from
what we intuitively think

• Most projects
• ignore human behavior,
• incorrectly assume behavior,
• or decide how people should behave (ha ha)

• To succeed in projects, we must study and adapt to real behavior rather
than assumed behavior

• Even if we don’t agree with that behavior

42BCS Dec 2016

Is Human Behavior a risk?

• Human behavior is a risk for the success of the system
• When human behavior is incorrectly modeled in the system
• Not because human users are wrong

• Things that can go wrong
• Customers not knowing well to describe what they really need
• Users not understanding how to use or operate the system
• Users using the system in unexpected ways
• Incorrect modeling of human transfer functions within the system:

ignorance of designers

• Actually, the humans aren’t acting unpredictably
• Because it happens again and again
• Human error results from physiological and psychological limitations

(and capabilities !) of humans

result
people

43BCS Dec 2016

People responsible for success

• During the project
• Can still influence the performance of the project
• First responsibility of the Project Manager
• Actually responsibility of the whole development organization

• After the project, once the system is out there alone
• No influence on the performance of the system any more
• System must perform autonomously
• So the performance must be there by design
• Including appropriate interface with humans
• Responsibility and required skill of designers

44BCS Dec 2016

Discipline

• Control of wrong inclinations
• Even if we know how it should be done …

(if nobody is watching …)

• Discipline is very difficult
• Romans 7:19

• The good that I want to do, I do not ...

→ Helping each other (watching over the shoulder)

→ Rapid success (do it 3 weeks for me…)

→ Making mistakes (provides short window of opportunity)

→ Openness (management must learn how to cope)

45BCS Dec 2016

Intuition

• Makes us react on every situation
• Intuition is fed by experience
• It is free, we always carry it with us
• We cannot even turn it off
• Sometimes intuition shows us the wrong direction
• In many cases the head knows, the heart not (yet)
• Coaching is about redirecting intuition

46BCS Dec 2016

Is intuition wrong, or is the design wrong ?

47BCS Dec 2016

Communication

• Talking as near as possible past each other

• Don’t assume we understand: check !

To each other Past each other

48BCS Dec 2016

Communication

• Traffic accident: witnesses tell their truth
• Same words, different concepts
• Human brains contain rather fuzzy concepts
• Try to explain to a colleague
• Writing it down is explaining it to paper
• If it’s written it can be discussed and changed
• Vocal communication evaporates immediately
• E-mail communication evaporates in a few days

49BCS Dec 2016

Perception

• Quick, acute, and intuitive cognition (www.M-W.com)

• Intuitive understanding and insight (www.oxforddictionaries.com)

• What people say and what they do is not always the same

• The head knows, but the heart decides

• Hidden emotions are often the drivers of behavior

• Customers who said they wanted lots of different ice cream flavors
from which to choose,
still tended to buy those that were fundamentally vanilla

• So, trying to find out what the real value to the customer is, can show
many paradoxes

• Better not simply believe what they say: check!

50BCS Dec 2016

It can’t be done, they don’t allow it

• If the success of your project is being frustrated by
• dogmatic rules
• ignorant managers

it’s no excuse for failure of your project

• Return the responsibility
• If you don’t really get the responsibility (empowerment)
• If you cannot continue to take responsibility

• At the end of your project it’s too late
at the FatalDate any excuse is irrelevant

• You knew much earlier

51BCS Dec 2016

People oppose change !

• People are not against change
• People (sub-consciously) don’t like uncertainty

• People can cope with uncertainty for a short time

• Any project changes something
and thus introduces uncertainty

52BCS Dec 2016

Excuses, excuses, excuses …

• We have been thoroughly trained to make excuses
• We always downplay our failures
• It’s always ‘them’ – How about ‘us’ ?

• At a Fatal Day, any excuse is in vain: we failed
• Even if we “really couldn’t do anything about it”
• Failure is a very hard word. That’s why we are using it !
• No pain, no gain
• We never say: “You failed” - Use: “We failed”

• After all, we didn’t help the person not to fail

53BCS Dec 2016

Excuses exercise

• What’s the most recent excuse you heard ?

• What’s the most recent excuse you used yourself ?

54BCS Dec 2016

Mistakes, unnecessary things

• What was the last time you made a mistake ?
• What was the last time you did something unnecessary ?

• Did you talk with others about it ?
• Did you learn from it ?
• What did you do about it ?

55BCS Dec 2016

Ignore the first reaction

• If you show something is wrong
• Even if the person agrees, first you’ll get:

“Yes, but ... bla bla” or,
“That’s because ... bla bla”

• We have been trained from childhood to make excuses
• Ignore the bla bla
• Wait for the next reaction

56BCS Dec 2016

We failed because of politics

• Good politics:
• People decide differently on different values

• Bad politics: hidden agenda’s
• Say this, mean that - often even unintentionally

• Politics thrive by vagueness
• Facts can make bad politics loose ground

• If you accepted the responsibility for the project,
failure because of “politics” is just an excuse

• What did you really do about it ?

57BCS Dec 2016

Culture

• It failed because of the existing culture
(no good excuse !)

• Culture is the result of how people work together
• Culture can’t be changed
• Culture can change
• By doing things differently

58BCS Dec 2016

Don’t talk about each other

• Talk with each other

• Short-Circuiting saves a lot of time

59BCS Dec 2016

Quality

60BCS Dec 2016

What is Quality ?

• I know it when I see it …?

• The right result
• Should be measurable
• Should be predictable

• But ...
ultimately they must like it when they see it

• It must satisfy the goal

61BCS Dec 2016

So called ‘Iron Triangle’

Time

Cost

Quality

Right Result

62BCS Dec 2016

Quality guru’s

• Shewhart - Economic Control of Quality 1931
• Deming - Japan 1950, Out of the crisis 1986
• Juran - Japan 1954, Quality handbook 1951
• Crosby - Zero Defects 1961, Quality is Free 1979
• Imai - Kaizen 1986, Gemba Kaizen 1997

63BCS Dec 2016

Deming - Juran - Crosby

64BCS Dec 2016

Do we deliver quality (value) ?

“We must deliver value !”
A project doesn’t deliver value

A project should create the conditions
for the users to let the quality emerge

Peter Drucker

Quality in a service or product is not what you put into it
It is what the client or customer gets out of it

65BCS Dec 2016

Cost of Quality
Model

Project Cost

Cost of PerformanceCost of Quality

Cost of
NonConformance

Cost of
Conformance

Prevention CostsAppraisal Costs

• Training
• Methodologies
• Tools
• Policy & Procedures
• Planning
• Quality Improvement
 Projects
• Data Gathering &
 Analysis
• Fault Analysis
• Root Cause Analysis
• Quality Reporting

• Reviews
 • System Requirements
 • Design
 • Test Plan
 • Test Procedures
• Walkthroughs
• Inspections
• Testing (First Time)
• IV&V (First Time)
• Audits

• Re-reviews
• Re-tests
• Fixing Defects
 • Implementation
 • Documentation
• Rework
• CCB
• Engineering Changes
• Lab Equipment Costs of
 Retests
• Files Failures Repairs
• Consequences to Name,
 Reputation

• Generation of Plans,
 Documentation
• Development of:
 • Requirements
 • Design
 • Implementation
 • Integration

After Ref. Raytheon in CMU/SEI-95-TR-017

Improvement Initiative

missed benefit

66BCS Dec 2016

Cost of Quality

0%

10%

20%

30%

40%

50%

60%

1988 1989 1990 1991 1992 1993 1994 1995

%
 P

ro
je

ct
 C

os
t

Ref. Raytheon in CMU/SEI-95-TR-017

Start of Effort

Bad Process
Change

Individual
Learning

Effect

% Cost of Conformance

% Cost of NonConformance

% Cost of Quality

Cost of
Doing it Right

Cost of
Doing it Wrong

Cost of
Quality

67BCS Dec 2016

Productivity gains

0%

10%

20%

30%

40%

50%

60%

1988 1989 1990 1991 1992 1993 1994 1995

%
 P

ro
je

ct
 C

os
t

Ref. Raytheon in CMU/SEI-95-TR-017

Start of Effort

Cost of
Doing it Right

Cost of
Doing it Wrong

Cost of
Quality

10%

20%

30%

40%

50%

60%

70%

80%

Factor 2.3

Examples how to move
towards Zero Defects

Niels Malotaux

www.malotaux.eu/conferences

Niels Malotaux:
»In my experience the
’zero defects’ attitude
results in 50% less

defects almost
overnight.«

69BCS Dec 2016

Do we deliver Zero Defect software ?

• How many defects are acceptable ?
• Do the requirements specify a certain number of defects ?
• Do you check that the required number has been produced ?

In your work
• How much time is spent putting defects in ?
• How much time is spent trying to find and fix them ?
• Do you sometimes get repeated issues ?
• How much time is spent on defect prevention ?

70BCS Dec 2016

71BCS Dec 2016

Who is the (main) customer of Testing and QA ?

• Deming:
• Quality comes not from testing, but from

improvement of the development process
• Testing does not improve quality, nor guarantee quality
• It’s too late
• The quality, good or bad, is already in the product
• You cannot test quality into a product

• Who is the main customer of Testing and QA ?
• What do we have to deliver to these customers ?

What are they waiting for ?

• Testers and QA are consultants to development
• Testing and QA shouldn’t delay the delivery - How ?

Deming
(1900-1993)

72BCS Dec 2016

Crosby (1926-2001) - Absolutes of Quality

• Conformance to requirements
• Obtained through prevention
• Performance standard is zero defects
• Measured by the price of non-conformance

(PONC)
Philip Crosby, 1970

• The purpose is customer success
(not customer satisfaction)

Added by Philip Crosby Associates, 2004

73BCS Dec 2016

What is Zero Defects

• Zero Defects is an asymptote

• When Philip Crosby started with Zero Defects in 1961,
errors dropped by 40% almost immediately

• AQL > Zero means that the organization has settled
on a level of incompetence

• Causing a hassle other people have to live with

zero defects

“acceptable
 level”

time
0

• We aren’t perfect,
but the customer shouldn't find out

• What we deliver simply works
• Know what simply works means !

Zero Defects
= no hassle

74BCS Dec 2016

Conformance to requirements

• We meet the agreed requirements
but …

• Have the requirements changed to
what we and the customer really need

• We create requirements with care and
we meet them with care

• Does our management take quality seriously ?

Philip Crosby

75BCS Dec 2016

Ultimate Goal of a What We Do

Delivering the Right Result at the Right Time,
wasting as little time as possible (= efficiently)

Providing the customer with
• what he needs
• at the time he needs it
• to be satisfied
• to be more successful than he was without it

Constrained by (win - win)
• what the customer can afford
• what we mutually beneficially and satisfactorily can deliver
• in a reasonable period of time

76BCS Dec 2016

Philip Crosby [Quality is Still Free]

• Conventional wisdom says that error is inevitable
• As long as the performance standard requires it,

then this self-fulfilling prophecy will come true

• Most people will say:
People are humans and humans make mistakes

• And people do make mistakes, particularly those who do not
become upset when they happen (do your developers get upset ?)

• Do people have a built-in defect ratio ?

• Mistakes are caused by two factors:
lack of knowledge and lack of attention

• Lack of attention is an attitude problem

77BCS Dec 2016

Zero Defects is an attitude

• As long as we think Zero Defects is impossible,
we will keep producing defects

• From now on, we don’t want to make mistakes any more

• We feel the failure (if we don’t feel failure, we don’t learn)

• If we deliver a result, we are sure it is OK and we’ll be highly
surprised when there proves to be a defect after all

• We do what we can to improve (continuous improvement)

78BCS Dec 2016

Prevention: Root Cause Analysis

• Is Root Cause Analysis routinely performed – every time ?
• What is the Root Cause of a defect ?

• Cause:
The error that caused the defect

• Root Cause:
What caused us to make the error that caused the defect

• Without proper Root Cause Analysis ,
we’re doomed to repeat the same errors

79BCS Dec 2016

W-model

80BCS Dec 2016

Some Examples

We’re not perfect,
but the customer shouldn’t find out

81BCS Dec 2016

Iterate as needed

Design techniques

• Design
• Review
• Code
• Review
• Test (no questions, no issues)

• If issue in test: no Band-Aid: start all over again:
Review: What’s wrong with the design ?

• Reconstruct the design (if there is no design)

Chapter
Requirement → What to achieve
.
Reasoning
Assumptions
Questions + Answers
Calculations
.
..
..
.
Possible solutions
Selection criteria
Decision → How to achieve

New date: change of idea:

Repeat some of the above

Decision → How to achieve

Design Log

82BCS Dec 2016

Chapter

Requirement → What to achieve
.
Reasoning
Assumptions
Questions + Answers
Calculations
.
..
..
.
Possible solutions
Selection criteria
Decision → How to achieve

New date: change of idea:

Repeat some of the above

Decision → How to achieve

Design Log

Case: In the pub

James:
Niels, this is Louise
Louise, this is Niels, who taught me about

DesignLogging - Tell what happened

Louise:

• We had only 7 days to finish some software
• We were working hard, coding, testing, coding, testing
• James said we should stop coding and go back to the design
• "We don't have time !" - "We've only 7 days !"
• James insisted
• We designed, found the problem, corrected it, cleaned up the mess
• Done in less than 7 days
• Thank you!

83BCS Dec 2016

What James told me recently

• I gave the design to two colleagues for review
• Louise corrected some minor issues
• It went into a ‘final’ review, with another colleague
• Based in his expertise, the solution was completely

reworked
• Actually, two features were delivered and deployed

• One that was design and code reviewed had no issues after
deployment

• Other one, was the source of quite some defects

• In summary, this success has proved instrumental
in buy-in for DesignLogs which are now
embedded in the development process

84BCS Dec 2016

Block[N]
Type

Service
Block[N] N = N+1

Normal Block Service Done

1 second service block

init
N=0
TL=?

N == Strategy Size

N !=Strategy Size

X=0
TL=TN

TN != TL Block[N]
Type

Service
Block[N] X = X+1

Service Done

N !=Strategy Size

Normal Block

1 second
service block

N == Strategy Size

init
N = 0
TL = ?

Block[N] Type

N = N+1

Service
Block[N]

N != Strategy Size

N == Strategy Size

X = 0
TL = TN

Nor
mal

Bloc
k

1 Second Service Block

Service Done

TN != TL

Block[N] Type

X = X + 1

Service
Block[N]X != Strategy Size

X == Strategy Size

Normal Block

1 S
ec

 S
er

vic
e B

lk

Service Done

Design can be done in many ways

85BCS Dec 2016

47 page interface description

Sorry, some pictures removed for confidentiality

86BCS Dec 2016

Choose the appropriate design

47 pages documentation condensed into one page

87BCS Dec 2016

Design example

88BCS Dec 2016

What is better than reviewing code ?

• Do you ever review software ?
• What do you review ?

• What is better than reviewing code ?
• May I review the design first ?

89BCS Dec 2016

90BCS Dec 2016

PCWaitInit
Reset

Init
Active2

Init Dead

PC
Reset

PC
Power

InitialDelay doneInit
Power

State diagram PC watchdog process

Reset
 pulse d

one

Powerpulse d
one

Not PCReceived and

RestartDelay done

and Restarts done

PC Dead

PC
Active

Not PCReceived andRestartDelay done andRestarts not done

24
hr

De
lay

 d
on

e

PCReceived

PC
Re

ce
iv

ed

Reset pulsePower pulse

Set RestartDelay

Set InitialDelaySet Resets

Init
Restart1

Set Powers

Init
Active1

Set 24hrDelay

Set 24hrDelay

Set PowerPulse Set ResetPulse

Init
Active0

Init
Active3

24hrDelay done

Set Restarts

Set Powers

Set Restarts

PCReceived

Po
w

er
s

do
ne

981126

Init

StandAlone or
NoPCWatch

Reset
s not done

Resets done

Powers
not done

PCInit2PCInit1 PCInit3 PCInit4

Set Restarts

Init
Restart2

Set Resets

= transient state

91BCS Dec 2016

PCWaitInit
Reset

Init
Active2

Init Dead

PC
Reset

PC
Power

InitialDelay doneInit
Power

State diagram PC watchdog process

Reset
 pulse d

one

Powerpulse d
one

Not PCReceived and

RestartDelay done

and Restarts done

PC Dead

PC
Active

Not PCReceived andRestartDelay done andRestarts not done

24
hr

De
lay

 d
on

e

PCReceived

PC
Re

ce
iv

ed

Reset pulsePower pulse

Set RestartDelay

Set InitialDelaySet Resets

Init
Restart1

Set Powers

Init
Active1

Set 24hrDelay

Set 24hrDelay

Set PowerPulse Set ResetPulse

Init
Active0

Init
Active3

24hrDelay done

Set Restarts

Set Powers

Set Restarts

PCReceived

Po
w

er
s

do
ne

981126

Init

StandAlone or
NoPCWatch

Reset
s not done

Resets done

Powers
not done

PCInit2PCInit1 PCInit3 PCInit4

Set Restarts

Init
Restart2

Set Resets

= transient state

Just reviewing code
doesn’t solve consistency issues

92BCS Dec 2016

Case: Scrum Sprint Planning

• What is the measure of success for the coming sprint ?
• “What a strange question !

We're Agile, so we deliver working software. Don't you know ?”

• Note: Users are not waiting for software:
they’re waiting for improved performance of what they’re doing

• How about a requirement for 'Demo': No Questions – No Issues
• That is impossible !!

• They actually succeeded !

93BCS Dec 2016

Demo ??

• Give the delivery to the stakeholders
• Keep your hands handcuffed on your back
• Keep your mouth shut
• and o-b-s-e-r-v-e what happens
• Seeing what the stakeholders actually do

provides so much better feedback
• Then we can ‘talk business’ with the stakeholders

• Is this what you do ?

94BCS Dec 2016

The ‘Demo’

Concurrent database record update

Demo room

Customer site

95BCS Dec 2016

Delivery Strategy Suggestions (Requirements)

• What we deliver will be used by the appropriate users immediately,
within one week not making them less efficient than before

• If a delivery isn’t used immediately, we analyse and close the gap
so that it will start being used (otherwise we don’t get feedback)

• The proof of the pudding is when it’s eaten and found tasty,
by them, not by us

• The users determine success and whether they want to pay
(we don’t have to tell them this, but it should be our attitude)

96BCS Dec 2016

How much legwork is being done in your project ?

• Requirements/specifications were trashed out with product
management

• Technical analysis was done and
• Detail design for the first delivery

At the first delivery:
• James: How is the delivery? (quality versus expectation)
• Adrian: It's exactly as expected, which is absolutely

unprecedented for a first delivery;
the initial legwork has really paid off

97BCS Dec 2016

Iterate fast, as needed

Basic approach

• Design the requirement
• Review
• Design implementation
• Review
• Implement (code)
• Review
• Test doesn’t find issues (because there are no issues)

98BCS Dec 2016

What’s in it for testers ?

• Did we see much testing in the previous ?
• Testing shouldn’t find anything (because there should be no issues)

• Did you ever find similar issues as you found before?
• First time: Developers ‘fault’
• Second time: Testers ‘fault’

• QA to help developers to produce less and less defects

Develop Test

Repair

What we often see What we should expect

Develop Check

Act
1 2

99BCS Dec 2016

Dijkstra (1972)

It is a usual technique to make a program and then to test it
However:

Program testing can be a very effective way to show
the presence of defects
but it is hopelessly inadequate for showing their absence

Conventional testing:
• Pursuing the very effective way to show the presence of defects

The challenge is, however:
• Making sure that there are no defects (development)
• How to show their absence if they’re not there (testing ?)

100BCS Dec 2016

Do we deliver Zero Defect products ?

• How many defects do you think are acceptable ?
• Do the requirements specify a certain number of defects ?
• Do you check that the required number has been produced ?

In your projects
• How much time is spent putting defects in ?
• How much time is spent trying to find and fix them ?
• Do you sometimes get repeated issues ?
• How much time is spent on defect prevention ?
• Could you use “No Questions – No Issues” ?

Approaching
Zero Defects

is Absolutely Possible

If in doubt, let's talk about it

Niels Malotaux

niels@malotaux.eu www.malotaux.eu/conferences

102BCS Dec 2016

Project
Life Cycles

103BCS Dec 2016

Waterfall ? Winston Royce 1970

104BCS Dec 2016

When can we use waterfall ?

• Requirements are completely clear, nothing will change
• We’ve done it may times before
• Everybody knows exactly what to do
• We call this production

Even most production doesn’t run smoothly the first time, it has to be tuned

• In your projects:
• Is everything completely clear ?
• Will nothing change ?
• Does everybody know exactly what to do ?
• Are you sure ?

105BCS Dec 2016

Problem - Solution

Problem known - Solution known = production

Problem known - Solution unknown = development

Problem unknown - Solution known = many IT projects

Problem unknown - Solution unknown = no problem ?

106BCS Dec 2016

V-Model

107BCS Dec 2016

W-model can be used for every Sprint

108BCS Dec 2016

All Models are wrong

Some are useful

109BCS Dec 2016

Evolutionary
Principles

110BCS Dec 2016

Murphy’s Law

• Whatever can go wrong,
will go wrong

• Should we accept fate ??

Murphy’s Law for Professionals:

Whatever can go wrong, will go wrong …

Therefore:

We should actively check all possibilities that can go wrong
and make sure that they cannot happen

111BCS Dec 2016

Do you use Retrospectives ?
Do we really learn from what happened ?

Insanity is doing the same things over and over again
and hoping the outcome to be different (let alone better - Niels)

Albert Einstein 1879-1955, Benjamin Franklin 1706-1790, it seems Franklin was first

Only if we change our way of working,
the result may be different
• Hindsight is easy, but reactive
• Foresight is less easy, but proactive
• Reflection is for hindsight and learning
• Preflection is for foresight and prevention

Only with prevention we can save precious time
This is used in the Deming or Plan-Do-Check-Act cycle

112BCS Dec 2016

The essential ingredient: the PDCA Cycle
(Shewhart Cycle - Deming Cycle - Plan-Do-Study-Act Cycle - Kaizen)

113BCS Dec 2016

Project evaluations

114BCS Dec 2016

Is waterfall wrong ?

cycle 1 n5 n-12 43 - - - - - - - -

115BCS Dec 2016

planningstart

smart planningstart planning

planningstart

bad stress

bad stress

nice stress

no stress is boring

Development cycles

• Bad stress is bad for
person and for project

• No stress is boring
• Nice stress feels like

accomplishment,
is sustainable

116BCS Dec 2016

Knowledge
how to achieve the goal

If we
• Use very short Plan-Do-Check-Act cycles
• Constantly selecting the most important things to do
• Don’t do unnecessary things
then we can
• Most quickly learn what the real requirements are
• Learn how to most effectively and efficiently realize these

requirements
and we can
• Spot problems quicker, allowing

more time to do something about them

doing the
right things

doing the right
things right

117BCS Dec 2016

Known for decades

• Benjamin Franklin (1706-1790)
• Waste nothing, cut off all unnecessary activities,

plan before doing, be proactive, assess results and learn continuously to improve
• Henry Ford (1863-1947)

• My Life and Work (1922)
• We have eliminated a great number of wastes

• Today and Tomorrow (1926)
• Learning from waste, keeping things clean and safe, better treated people produce more

• Toyoda’s (Sakichi, Kiichiro, Eiji) (1867-1930, 1894-1952, 1913-2013)
• Jidoka: Zero-Defects, stop the production line (1926)
• Just-in-time – flow – pull

• W. Edwards Deming (1900-1993)
• Shewart cycle: Design-Produce-Sell-Study-Redesign (Japan – 1950)
• Becoming totally focused on quality improvement (Japan – 1950)

Management to take personal responsibility for quality of the product
• Out of the Crisis (1986) - Reduce waste

• Joseph M. Juran (1904-2008)
• Quality Control Handbook (1951, Japan – 1954)
• Total Quality Management – TQM
• Pareto Principe

• Philip Crosby (1926-2001)
• Quality is Free (1980)

• Zero-defects (1961)

• Taiichi Ohno (1912-1990)
• (Implemented the) Toyota Production System (Beyond Lange-Scale Production) (1988)
• Absolute elimination of waste - Optimizing the TimeLine from order to cash

• Masaaki Imai (1930-)
• Kaizen: The Key to Japan's Competitive Success (1986)
• Gemba Kaizen: A Commonsense, Low-Cost Approach to Management (1997)

118BCS Dec 2016

Lean

• The goal is reduction of waste
• To achieve this, a company must look at what creates value and

eliminate all other activities
• Understand and specify the value desired by the customer
• Identify the value stream for each product providing that value
• Challenge all of the wasted steps (generally nine out of ten) currently

necessary to provide it
• Make the product flow continuously through the remaining value-added

steps
• Introduce pull between all steps where continuous flow is possible
• Manage toward perfection so that the number of steps and the amount

of time and information needed to serve the customer continually falls

A lot of the cost of vehicles is based on:
• bad design
• poor management
• an attitude that problems, no matter

how small, can be overlooked

119BCS Dec 2016

Toyota Production System (TPS)

Four specific aims:

• Deliver the highest possible quality and service to
the customer

• Develop employee’s potential based upon mutual
respect and cooperation

• Reduce cost through eliminating waste
in any given process

• Build a flexible production site that can respond to
changes in the market

1950
• Toyota almost collapsed
• Laying off 1/3 of workforce

120BCS Dec 2016

Taiichi Ohno - The Toyota Production System

• All we do is looking at the TimeLine from Order to Cash (p.ix)

• The Toyota Production System began when I challenged the old system (p11)

• Necessity is the mother of invention:
improvements are made on clear purposes and need (p13)

• The TPS has been built on the practice of asking “Why?” 5 times (p17)

• The time that provides me with the most vital information about
management is the time I spent in the plant, not in the office (p20)

• Toyota’s top management watched the situation quietly and I admire the
attitude they took (p31)

order cash

Reducing the time by removing non-value-added wastes

121BCS Dec 2016

Pillars of the TPS

• Just in Time
• No inventory
• Doing the right things at the right time

• Perfection
• Perfection is a condition for JIT to work
• If a defect is found, stop the line, find cause, fix immediately
• Continuous improvement of product, project and process

• Autonomation
• The loom runs unattended until signalling it needs help
For development:
• The development team runs unattended until signalling they need help

(caused by an issue beyond their control)

• Management observes the team and facilitates them to become ever more
efficient, to prevent issues delaying them beyond the teams control –
Education, Empowerment and Responsibility of people

• If an issue does occur, management helps to remove obstacles quickly,
making sure it doesn’t happen again

122BCS Dec 2016

Just In Time delivery – no inventory (after Ohno)

4567891011121314151617181920 123

Engine
preparation

Instrument panel
preparation

Window
preparation

Bosal Sequential In-Line System:
We pioneered just-in-time delivery of exhaust systems - supplying
systems to the assembly line within 80 minutes of receiving the order

Kanban

123BCS Dec 2016

Value stream example

• Total Business Cost 114 days, Cost of Non Value: 112 days
• Occurrence: 2 x per day, delay per occurrence: 10 min
• Number of business people affected: 100
• Business Cost of Non Value: 2 x 100 people x 10 min x 112 days x 400€/day = 187 k€
• Net Cost of Value: 1.6 days: ~3 people x 1.6 days x 1000€/day = 5 k€

124BCS Dec 2016

Capacity = Work + Waste

Work Capacity
• Net Work, creating value
• Non-value adding, but necessary work
• Waste

125BCS Dec 2016

Identifying waste

Manufacturing Development Possible Remedies

Overproduction Extra features
Unused documents

Prioritizing, Real Requirements,
Deciding what not to do

Inventory Partially done work Synchronization, Just In Time

Transport Handoffs Keeping in one hand/mind:
- Responsibility (what to do)
- Knowledge (how to do it)
- Action (doing it)
- Feedback (learning from Result)

Processing Design inefficiency
Wishful thinking

Knowledge, experience, reviews
Preflection

Waiting Delays Process/Organization redesign

Movement Task Switching Max 2 tasks in parallel

Defects Defects Prevention

Ignoring ingenuity
of people

Ignoring ingenuity of
people

Real management, Empowerment
Bottom-up responsibility

126BCS Dec 2016

5-S

• Seiri - Remove unnecessary things → waste

• Seiton - Arrange remaining things orderly → flow

• Seiso - Keep things clean → uncovers hidden problems

• Seiketsu - Keep doing it, standardize → know what to improve

• Shitsuke - Keep training it → fighting entropy

127BCS Dec 2016

The 3 Mu’s to remove

• Muda - Waste → minimize waste
• Mura - Irregularities → optimize flow
• Muri - Stress → sustainable pace

128BCS Dec 2016

There is nothing new in software too

• Managing the development of large software systems - Winston Royce - 1970

• Famous “Waterfall document”: figure 2 showed a ‘waterfall’
• Text and other figures showed that Waterfall doesn’t work
• Anyone promoting Waterfall doesn’t know or didn’t learn from history

• Incremental development - Harlan Mills - 1971

• Continual Quality feedback by Statistical Process Control (Deming !)
• Continual feedback by customer use
• Accommodation of change - Always a working system

• Cleanroom software engineering - Harlan Mills - 1970’s

• Incremental Development - Short Iterations
• Defect prevention rather than defect removal
• Statistical testing
• 10-times less defects at lower cost
• Quality is cheaper

• Evolutionary Delivery - Evo - Tom Gilb - 1974, 1976, 1988, 2005

• Incremental + Iterative + Learning
and consequent adaptation

• Fast and Frequent Plan-Do-Check-Act
• Quantifying Requirements - Real Requirements
• Defect prevention rather than defect removal

129BCS Dec 2016

Lean things

• Most managers think their greatest contribution to the
business is doing work-arounds on broken processes, rather
than doing the hard work to get the process right so that it
never breaks down (Womack)

• 90 per cent of all corporate problems can be solved using
common sense and improving quality while reducing cost
through the elimination of waste
Imai: Gemba Kaizen - A Commonsense Low-Cost Approach to Management

• Root-Cause-Analysis on every defect found ?
We don’t have time for that ! (project manager)

• Plan-Do-Check-Act cycle was by far the most important thing
we did in hindsight (Tom Harada)

130BCS Dec 2016

• Evo (short for Evolutionary...) uses PDCA consistently
• Applying the PDCA-cycle

actively, deliberately, rapidly and frequently,
for Product, Project and Process, based on ROI and highest value

• Combining Planning, Requirements- and Risk-Management into
Result Management

• We know we are not perfect, but the customer shouldn’t be
affected

• Evo is about delivering Real Stuff to Real Stakeholders
doing Real Things “Nothing beats the Real Thing”

• Projects seriously applying Evo, routinely conclude
successfully on time, or earlier

Evo

131BCS Dec 2016

Evo Project Planning

Evolutionary Project Management
elements (Evo) – Tom Gilb

• Plan-Do-Check-Act
• The powerful ingredient for success

• Business Case
• Why we are going to improve what

• Requirements Engineering
• What we are going to improve and what not
• How much we will improve: quantification

• Architecture and Design
• Selecting the optimum compromise for the conflicting requirements

• Early Review & Inspection
• Measuring quality while doing, learning to prevent doing the wrong things

• Weekly TaskCycle
• Short term planning
• Optimizing estimation
• Promising what we can achieve
• Living up to our promises

• Bi-weekly DeliveryCycle
• Optimizing the requirements and checking the assumptions
• Soliciting feedback by delivering Real Results to eagerly waiting Stakeholders

• TimeLine
• Getting and keeping control of Time: Predicting the future
• Feeding program/portfolio/resource management

Zero
Defects
Attitude

132BCS Dec 2016

Evolutionary
Planning

prevention is better than cure

133BCS Dec 2016

Did you prepare ?

• The Goal of your current work or project
• The Definition of Success
• The most important stakeholder (Who is waiting for it?)

• The most important requirement for this stakeholder (What is he waiting for?)

• How much value improvement does this stakeholder expect (3 or 7?)

• Any deadlines? (No deadlines: it will take longer)

• What you and your team should and can have achieved in the coming 10
weeks
(Will you succeed? If yes: great. If not: what could you do about it? - Failure is not an option!)

• What you think you should and can do the coming week to achieve what
you’re supposed to achieve
(How do you make sure that by the end of the week all of this will be done)

• Any issues you expect with the above or otherwise with your work or
project

134BCS Dec 2016

To-do lists

• Are you using to-do lists ?
• List the things you have to do the coming week
• Did you add effort estimates?
• Did you check how much time you have available the coming week ?
• Does what you have to do fit in the available time ?
• Did you check what you can do and what you cannot do?
• Did you take the consequence?

• Evo:
• Because we are short of time, we better use

the limited available time as best as possible
• We don’t try to do better than possible
• To make sure we do the best possible, we choose what to do in the

limited available time. We don’t just let it happen randomly

135BCS Dec 2016

DoneDone

Sprint

Sprint Planning Done

Retrospective

Demo Sprint Planning

TaskCycle Planning TaskCycle Planning TaskCycle Planning

Delivery Delivery

Standups? ?

Done
DeliveryDelivery

Done Done Done

136BCS Dec 2016

Evo Planning: Weekly TaskCycle

• Are we doing the right things,
in the right order,
to the right level of detail for now

• Optimizing estimation, planning and
tracking abilities to better predict the future

• Select highest priority tasks, never do any
lower priority tasks, never do undefined tasks

• There are only about 26 plannable hours in a week (2/3)
• In the remaining time: do whatever else you have to do
• Tasks are always done, 100% done

137BCS Dec 2016

Effort and Lead Time

• Days estimation → lead time (calendar time)
• Hours estimation → effort

• Effort variations and lead time variations have different
causes

• Treat them differently and keep them separate
• Effort: complexity
• Lead Time: time-management

• (effort / lead-time ratio)

138BCS Dec 2016

Every week we plan

• How much time do we have available
• 2/3 of available time is net plannable time
• What is most important to do
• Estimate effort needed to do these things
• Which most important things fit in the

net available time (default 26 hr per week)
• What can, and are we going to do
• What are we not going to do

2/3 is default start value
this value works well in development projects

Taska 2
Taskb 5
Taskc 3
Taskd 6
Taske 1
Taskf 4
Taskg 5
Taskh 4
Taskj 3
Taskk 1

26

do

do
not

139BCS Dec 2016

TaskCycle Exercise

• How much time do you have available
• 2/3 of available time is net plannable time
• What is most important to do (update your list)

• Estimate effort needed to do these things
• Which most important things fit in the net available time

(default 26 hr)
• What can you do, and what are you going to do
• What are you not going to do
• Why ?

Taska 2
Taskb 5
Taskc 3
Taskd 6
Taske 1
Taskf 4
Taskg 5
Taskh 4
Taskj 3
Taskk 1

26

do

do
not

140BCS Dec 2016

Weekly 3-Step Procedure
• Individual preparation

• Conclude current tasks
• What to do next
• Estimations
• How much time available

• Modulation with / coaching by Project Management (1-on-1)
• Status (all tasks done, completely done, not to think about it any more ?)
• Priority check (are these really the most important things ?)
• Feasibility (will it be done by the end of the week ?)
• Commitment and decision

• Synchronization with group (team meeting)
• Formal confirmation (this is what we plan to do)
• Concurrency (do we have to synchronize ?)
• Learning
• Helping
• Socializing

141BCS Dec 2016

cycle who task description estim real done issues
3 John Net time available: 26

aaaaaaaaa 3 3 yes
bbbbbbbb [Paul] 1
cccccccccc 5 13 yes
dddddddd 2
eeeeeeee 3 2
ffffffffffff 2 1
ggggggggg 6 7 yes
hhhhhhhh 4

26 26

4 John Net time available: 26
jjjjjjjjjjjjjjj 3 for proj x
kkkkkkkkk 1 for proj x
mmmmm 5 for proj x
nnnnnnnn 2 for proj x
pppppppp 3 for proj y
qqqqqqqq 12 for proj y
rrrrrrrrrrrrr 6 for proj y
ssssssssss 4 for proj y
tttttttttttt 4 for proj y

40

TaskCycle Analysis
(retrospective)

TaskCycle Planning
(presepective)

learning

142BCS Dec 2016

How fast can it go ?

• Check the amount of work to do (to test)
• Chek the tasks assigne to me
• Pick up a task to test (recurrently)
• Test the tasks (when the previous are tested)
• Discuss the deliverables
• Prepare for the demo
• Hold the demo

• Check the amount of work to do (to test) 1
• Chek the tasks assigne to me 2
• Pick up a task to test (recurrently) 1
• Test the tasks (when the previous are tested) 24
• Discuss the deliverables 3
• Prepare for the demo 4
• Hold the demo 2

• 41
• 37
• 26

• Check the amount of work to do (to test) 1
• Chek the tasks assigne to me 2
• Pick up a task to test (recurrently) 1
• Test the tasks (when the previous are tested) 24
• Discuss the deliverables 3
• Prepare for the demo 4
• Hold the demo 2

143BCS Dec 2016

DeliveryCycle

• Are we delivering the right things,
in the right order
to the right level of detail for now

• Optimizing requirements
and checking assumptions

1. What will generate the optimum feedback
2. We deliver only to eagerly waiting stakeholders
3. Delivering the juiciest, most important

stakeholder values that can be made in the least time
• What will make Stakeholders more productive now

• Not more than 2 weeks

delivery

task

strategy

roadmap

project

organization

144BCS Dec 2016

Do you demo at the end of a Sprint ?

• Give the delivery to the stakeholders
• Keep your hands handcuffed on your back
• Keep your mouth shut
• and o-b-s-e-r-v-e what happens
• Seeing what the stakeholders actually do

provides so much better feedback
• Then we can ‘talk business’ with the stakeholders

• Is this what you do ?
• Success criterion: “No Questions, No Issues”

145BCS Dec 2016

Tasks feed Deliveries
delivery

task

strategy

roadmap

project

organization

146BCS Dec 2016

Designing
a Delivery

Serge (ProjLead)
MbWA 3
Planning nxt wk 3
Work for deliv 4
- 6
- 2
- 1
- 5
Total 24

Gregory
Draft design 6
Finish design 6
Work for deliv 3
- 1
- 2
- 2
- 3
- 5
- 6
XMLa 4
XMLb 4
Total 42

Jerome
XMLa 3
XMLb 3
...

available time:
36 hr gross

24 hr plannable deliv to
main
team

Delivery to
Stakeholders

TaskCycle

Gregory (later)
Draft design 0
Finish design 0
...

FriThuWedMon TueFri ThuWed Mon TueFri

Delivery to
Stakeholders

147BCS Dec 2016

Value stream mapping

• Total Business Cost 114 days, Cost of Non Value: 112 days
• Occurrence: 2 x per day, delay per occurrence: 10 min
• Number of business people affected: 100
• Business Cost of Non Value: 2 x 10 min x 112 days x 100 people x 400 €/day = 187 k€
• Net Cost of Value: 1.6 days → ~3 people x 1.6 days x 800 €/day = 5 k€

148BCS Dec 2016

Designing
a Delivery

Serge (ProjLead)
MbWA 3
Planning nxt wk 3
Work for deliv 4
- 6
- 2
- 1
- 5
Total 24

Jerome
XMLa 3
XMLb 3
...

available time:
36 hr gross

24 hr plannable deliv to
main
team

Delivery to
Stakeholders

TaskCycle

Gregory (later)
Draft design 0
Finish design 0
...

Gregory
Draft design 0
Finish design 0
Work for deliv 3
- 1
- 2
- 2
- 3
- 5
- 6
XMLa 1
XMLb 1
Total 24

FriThuWedMon TueFri ThuWed Mon TueFri

Delivery to
Stakeholders

149BCS Dec 2016

Why is this important ?

• TaskCycle Planning is not
just planning the work for the coming week

• Half (±30%) of what people do in projects later proves not
having been necessary

• During the TaskCycle planning we can very efficiently see
• What our colleagues think they’re going to do
• Make sure they’re going to work on the most important things
• Not on unnecessary things
• In line with the architecture and design
• Leading most efficiently to the goal of the delivery

• We’ll see two cases where the architect
led the project to success in record time

150BCS Dec 2016

Earth Observation Satellite

• Very experienced Systems Engineers
• They use quantified requirements routinely
• They don’t know exactly where they’ll end up
• 10 year pure waterfall project (imposed by ESA)

• Only problem: They missed all deadlines
• 9 weeks later: They haven’t missed any deadline since
• Recently: delivered 1 day early (instead of 1 year late)

• Savings: some 40 man-year
• How did they do that ?

151BCS Dec 2016

Awful schedule pressure !

• Meeting with sub-contractors in three weeks
• Many documents to review
• Impossible deadline

• How many documents to review ?
• How much time per document ?

• Some suggestions …
• Result: well reviewed, great meeting, everyone satisfied

per doc hr

4 heavy 15 60

3 easy 2 6

total 66

other work 33

total 99

available 2 x 26 52

152BCS Dec 2016

153BCS Dec 2016

Developing a new oscilloscope

• 4 teams of 10 people, 8 more people in Bangalore
• Introduced first in one team
• Other teams followed once convinced
• One team lagged because fear of ‘micro-management’

• Even if we would drop all you suggested, the 1-on-1’s will be
kept, because so powerful:

• We used to do something and afterwards found out it wasn’t what it
should be

• Now we find out before, allowing us to do it more right the first time

154BCS Dec 2016

Results

• Schedule accuracy for this platform development was
50% better than the program average (as measured by
program schedule overrun) over the last 5 years

• This product was the fastest time-to-market with the
highest quality at introduction of any platform in our group
in more than 10 years

• The team also won a prestigious Team Award as part of the
company’s Technical Excellence recognition program

www.malotaux.nl/doc.php?id=19 chapter 4.7.1, page 70

155BCS Dec 2016

Software project in Poland

• ‘Mission Impossible’: Delivery deadline in 6 weeks
• Will you succeed ?
• No !
• Failure is not an Option !
• Changed their way of working
• Delivered to amazed customer in 5 weeks
• Proudly confided: “Not working overtime !”

156BCS Dec 2016

If we add something …

If we add something, something else will not be done

Rather than letting it happen randomly
We better decide what will happen

now FatalDate

157BCS Dec 2016

Active Synchronization

Somewhere around you, there is the bad world.
If you are waiting for a result outside your control,
there are three possible cases:

1. You are sure they’ll deliver Quality On Time
2. You are not sure
3. You are sure they’ll not deliver Quality On Time
• If you are not sure (case 2), better assume case 3
• From other Evo projects you should expect case 1
• Evo suppliers behave like case 1

In cases 2 and 3: Actively Synchronize: Go there !
1. Showing up increases your priority
2. You can resolve issues which otherwise would delay delivery
3. If they are really late, you’ll know much earlier

158BCS Dec 2016

Interrupts

• Boss comes in: “Can you paint the fence?”
• What do you do?

• In case of interrupt, use interrupt procedure

Sorry, some pictures removed for confidentiality

159BCS Dec 2016

Interrupt Procedure ”We shall work only on planned Tasks”

In case a new task suddenly appears in the middle of a Task Cycle
(we call this an Interrupt) we follow this procedure:
1. Define the expected Results of the new Task properly
2. Estimate the time needed to perform the new Task, to the level of detail

really needed
3. Go to your task planning tool (many projects use the ETA tool)
4. Decide which of the planned Tasks is/are going to be sacrificed

(up to the number of hours needed for the new Task)
5. Weigh the priorities of the new Task against the Task(s) to be sacrificed
6. Decide which is more important
7. If the new Task is more important: replan accordingly
8. I the new Task is not more important, then do not replan and

do not work on the new Task. Of course the new Task may be added to
the Candidate Task List

9. Now we are still working on planned Tasks.

160BCS Dec 2016

Quality on Time

• Evo development gradually delivers function and
performance, while eating up resources

• Not just what to deliver, but also how we are going to
deliver it and whether this is the right way to deliver it

• EvoPlanning prevents a lot of bad implementations
before they are implemented, saving a lot of time

161BCS Dec 2016

Now we are already much more efficient

• Organizing the work in very short cycles
• Making sure we are doing the right things
• Doing the right things right
• Continuously optimizing (what not to do)
• So, we already work more efficiently

but ...

• How do we make sure the whole project is done on time ?

162BCS Dec 2016

TimeLine
How to make sure we get

the Right Results at the Right Time

163BCS Dec 2016

TimeLine What the customer wants, he cannot afford

Standard Projects

Evo

• Better 80% 100% done, than 100% 80% done
• Let it be the most important 80%

Agile

164BCS Dec 2016

If it easily fits ...

165BCS Dec 2016

Result to Tasks and back

166BCS Dec 2016

CalibrationActivity
Act1
Act2
Act3
Act4
Act5
Act6
Act7
Act8
Act9
Act10
Act11
Act12
Act13
Act14
Act15
Act16
Act17
Act18
Act19
Act20
Act21

Act…

now

then

then2

Value Still To Earn

then

now
AeCalibration Factor ∗

ratio ΣAr/ ΣAe
in the past

predicted
Value Still To Earn
in the future

Activity Estimate Real
Act1 Ae1 Ar1
Act2 Ae2 Ar2
Act3 Ae3 Ar3
Act4 Ae4 Ar4
Act5 Ae5 Ar5
Act6 Ae6 Ar6
Act7 Ae7 Ar7
Act8 Ae8 Ar8
Act9 Ae9 Ar9
Act10 Ae10 Ar10
Act11 Ae11
Act12 Ae12
Act13 Ae13
Act14 Ae14
Act15 Ae15
Act16 Ae16
Act17 Ae17
Act18 Ae18
Act19 Ae19
Act20 Ae20
Act21 Ae21

Act… Ae…

Activity Estimate
Act1 Ae1
Act2 Ae2
Act3 Ae3
Act4 Ae4
Act5 Ae5
Act6 Ae6
Act7 Ae7
Act8 Ae8
Act9 Ae9
Act10 Ae10
Act11 Ae11
Act12 Ae12
Act13 Ae13
Act14 Ae14
Act15 Ae15
Act16 Ae16
Act17 Ae17
Act18 Ae18
Act19 Ae19
Act20 Ae20
Act21 Ae21

Act… Ae…

Calibration Factor

−

−

−

−
nnow

now

nnow

now

Ae

Ar

1

1

167BCS Dec 2016

Predicting what will be done when

Calibr
factor

1.0

1.0
1.0
1.4
1.4
1.4

1.4
1.4
1.4

Calibr
still to

1

2
1

4.2
1.4
4.2

5.6
7.0
9.8

Ratio
real/es

1.0
1.2
3.0
2.5
1.0

Spent Still to
spend

2 0
5 1
3 0
3 2
4 1

Estim

2
5
1
2
5
3
1
3

4
5
7

Line Activity

1 Activity 1
2 Activity 2
3 Activity 3
4 Activity 4
5 Activity 5
6 Activity 6
7 Activity 7
8 Activity 8
↓ ↓
16 Activity 16
17 Activity 17
18 Activity 18

Date
done

30 Mar 2009

1 Apr 2009
2 Apr 2009
9 Apr 2009

10 Apr 2009
16 Apr 2009

2 Jun 2009
11 Jun 2009

25 Jun 2009

for the project to report

168BCS Dec 2016

Product/Portfolio/Resource Management

• Current Program/Portfolio/Resource Management is based
on hope

• More a game than management

• With TimeLine we can provide PPR Management with
sufficiently reliable data

• To start managing

169BCS Dec 2016

What do we do if we see we won’t make it on time ?

• Value Still to Earn
versus

• Time Still Available

If the match is over, you cannot score a goal

Value Still to EarnEarned Value

170BCS Dec 2016

FatalDay

• We take time seriously

• FatalDay is the last moment it shall be there

• After the FatalDay, we’ll have real trouble
if the Result isn’t there

• Count backwards from the FatalDay to know when we
should have started (starting deadlines !)

• If that’s before now, what are we going to do about it,
because failure is not an option

171BCS Dec 2016

Even more important: Starting Deadlines

• Starting deadline
• Last day we can start to deliver by the end deadline
• Every day we start later, we will end later

starting deadline

minimum time to finish the job

172BCS Dec 2016

How can we be
On Time ?

173BCS Dec 2016

Deceptive options

• Hoping for the best (fatalistic)

• Going for it (macho)

• Working overtime (fooling ourselves)

• Moving the deadline
• Parkinson’s Law

• Work expands to fill the time for its completion
• Student Syndrome

• Starting as late as possible,
only when the pressure of the FatalDate is really felt

Intuition often guides us into the wrong direction

174BCS Dec 2016

The Myth of the
Man-Month

1 2 3 4 5 6 87 9 10 11 12 13 14 15 16

1

2

3

4

5

6

8

7

9

10

11

12

13

14

intuition
people x time = constant

Man-Month Myth

reality
(Putnam)

project
duration

number of people

lower cost

shorter time

nine
mothers

area

Economic
optimum?

Brooks’ Law (1975)

Adding people
to a late project

makes it later

175BCS Dec 2016

Saving time

We don’t have enough time, but we can save time
without negatively affecting the Result !

• Efficiency in what (why, for whom) we do - doing the right things
• Not doing what later proves to be superfluous

• Efficiency in how we do it - doing things differently
• The product

• Using proper and most efficient solution,
instead of the solution we always used

• The project
• Doing the same in less time,

instead of immediately doing it the way we always did
• Continuous improvement and prevention processes

• Constantly learning doing things better
and overcoming bad tendencies

• Efficiency in when we do it - right time, in the right order

• TimeBoxing - much more efficient than FeatureBoxing

176BCS Dec 2016

TimeLine

• The TimeLine technique doesn’t solve our problems
• It helps to expose the real status early and continuously
• Instead of accepting the undesired outcome,

we do something about it
• The earlier we know, the more we can do about it
• We start saving time from the very beginning
• We can save a lot of time in any project,

while producing a better outcome

If, and only if, we are serious about time !

177BCS Dec 2016

Estimation techniques used

• Just-enough estimation (don’t do unnecessary things)
• Maximizing Return-on-Investment and Value Delivered

• Changing from optimistic to realistic predictions
• Estimation of Tasks in the TaskCycle
• Prediction what will be done when in TimeLine

• 0th order estimations (ball-park figures)
• For decision-making in Business Case and Design

• Simple Delphi
• For estimating longer periods of time in TimeLine
• For duration of several (15 or more) elements of work

• Simpler Delphi (just enough !)
• Same, but for quicker insight
• Recently added by practice

• Calibration
• Coarse metrics provide accurate predictions

• Doing something about it (if we don’t like what we see)
• Taking the consequence
• Saving time

178BCS Dec 2016

TimeLine examples

179BCS Dec 2016

TimeLine example

1-Jan-07 31-Dec-08

1-Apr-07 1-Jul-07 1-Oct-07 1-Jan-08 1-Apr-08 1-Jul-08 1-Oct-08

14-May-07 1-Feb-08

1-Aug-07 - 1-Nov-07
SW3

5-Mar-07 1-Aug-07 1-Nov-07 1-Apr-08

1-Jan-07 - 5-Mar-07

Phase 1
Definition

5-Mar-07 - 1-Aug-07

Phase 2
Validating Architecture

1-Aug-07 - 1-Apr-08

Phase 3
Realization Initial System

5-Mar-07 - 17-Mar-07

SW1.1

17-Mar-07
Very simplest

system

14-May-07 - 1-Aug-07
SW2

5-Mar-07 - 14-May-07
SW1

1-Nov-07 - 1-Feb-08
SW4

1-Feb-08 - 31-Dec-08
SW5

1-Apr-08 - 31-Dec-08

Phase 4
Realization Final System

1-Aug-07
Basic overall

system

1-Nov-07
Rich

overall system

1-Apr-08
Exhibition

ready

10wk 11wk 13wk 11wk 8wk

1-Feb-08
Exhibition feature

cut-off

Full overall
system

14-May-07
Basic

system

31-Dec-08
Complete

180BCS Dec 2016

5 day project model

dayplan daycheckwork according to plan

Mon Tue Wed Thu Fri

pl
an

ni
ng

re
qu

ir
em

en
ts

gl
ob

al
 d

es
ig

n

de
ta

il
ex

ec
ut

io
n

re
vi

ew
 a

nd
 e

di
t

pr
es

en
ta

tio
n

de
liv

er
y

do
cu

m
en

ta
tio

n

ar
ch

iv
in

g

co
nt

in
ui

ty

181BCS Dec 2016

Available TimeBoxes

activity ~%
Planning
Requirements
Global design
Detail execution
Review and edit
Presentation
Delivery
Documentation
Archiving
Continuity
total

5
5

20
20
20
5
10
5
5
5

100

hrs
2
2
8
8
8
2
4
2
2
2

40

dayplan daycheckwork according to plan

Mon Tue Wed Thu Fri

pl
an

ni
ng

re
qu

ir
em

en
ts

gl
ob

al
 d

es
ig

n

de
ta

il
ex

ec
ut

io
n

re
vi

ew
 a

nd
 e

di
t

pr
es

en
ta

tio
n

de
liv

er
y

do
cu

m
en

ta
tio

n
ar

ch
iv

in
g

co
nt

in
ui

ty

182BCS Dec 2016

TimeLine planning Sorry, picture removed for confidentiality

183BCS Dec 2016

Preparing for student exams

184BCS Dec 2016

Sorry, picture removed for confidentiality

185BCS Dec 2016

Sorry, picture removed for confidentiality

186BCS Dec 2016

Sorry, picture removed for confidentiality

187BCS Dec 2016

TimeLine exercise for your Project

• What is the FatalDate, how many weeks left
• What is the expected result (←Business Case / Reqs)
• What do you have to do to achieve that result
• Cut this into chunks and make a list of chunks of activities
• Estimate the chunks (in weeks or days)
• Calculate number of weeks
• Compensate for estimated incompleteness of the list
• How many people are available for the work

1. More time needed than available
2. Exactly fit
3. Easily fit

• Case 1 and 2: work out the consequence at this level
• Case 3: go ahead (but don’t waste time!)

188BCS Dec 2016

Help !
We have a
QA problem !

189BCS Dec 2016

Help !
We have a QA problem !

• Large stockpile of modules to test
(hardware, firmware, software)

• You shall do Full Regression Tests
• Full Regression Tests take about 15 days each
• Too few testers (“Should we hire more testers ?”)

• Senior Tester paralyzed
• Can we do something about this?

www.malotaux.nl/booklets - booklet#8

190BCS Dec 2016

Do you think you can help us ?

191BCS Dec 2016

In stead of complaining about a problem …
(Stuck in the Check-phase)

Let’s do something about it !
(Moving to the Act-phase)

192BCS Dec 2016

Objectifying and quantifying the problem
is a first step to the solution

Estim

17
8
14
11
9
17
4

26

totals 106

Line Activity

1 Package 1
2 Package 2
3 Package 3
4 Package 4 (wait for feedback)
5 Package 5
6 Package 6
7 Package 7
8 Package 8

Customer Will be done
(now=22Feb)

HT
Chrt
BMC
McC?
Ast

?
Cli

Sev
?

Chrt 24 Feb
Chrt
Yet 28 Feb
Yet 24 Mar
Cli After 8.5 OK
Ast

Alter
native

Junior
tester

Devel
opers

2 17 4
5 10
7 5 4

3 5
3 10 10
1 3
1
1
1
1

1.1
3

0.1
18
47 32 36

Line Activity

1 Package 1
2 Package 2
3 Package 3
4 Package 4 (wait for feedback)
5 Package 5
6 Package 6
7 Package 7
8 Package 8.1
9 Package 8.2
10 Package 8.3
11 Package 8.4
12 Package 8.5
13 Package 8.6
14 Package 8.7
15 Package 8.8

totals

Estim

17
8
14
11
9
17
4
1
1
1
1

1.1
3

0.1
18

106

193BCS Dec 2016

TimeLine

Selecting the priority order of customers to be served
• “We’ll have a solution at that date … Will you be ready for it ?”

An other customer could be more eagerly waiting

• Most promising customers

wk
9 10 11 12 13 14 15 16 17 13

delivery
cust a

delivery
cust b,c

delivery
cust a,d

start (all done)

194BCS Dec 2016

Result

• Tester empowered
• Done in 9 weeks
• So called “Full Regression Testing” was redesigned
• Customers systematically happy and amazed
• Kept up with development ever since
• Increased revenue
Recently:
• Tester promoted to product manager
• Still coaching successors how to plan

195BCS Dec 2016

Business Case

196BCS Dec 2016

Business Case

• Why are we running a project ?
• The new project improves previous performance
• Types of improvement:

• Less loss
• More profit
• Doing the same in shorter time
• Doing more in the same time
• Being happier than before
• Better environment

• In short: Adding Value
• Return on Investment

197BCS Dec 2016

Higher Productivity

• All functionality we produce does already exist

• The real reason for running our projects is
creating better performance

• Types of improvement:
• Less loss
• More profit
• Doing the same in shorter time
• Doing more in the same time
• Being happier than before

• In short: Adding Value

198BCS Dec 2016

How many Business Cases ?

• There are usually at least two Business Cases:
• Theirs
• Yours

• How many Business Cases are there in your project ?

• Every Stakeholder has his own business case

199BCS Dec 2016

Stakeholders

200BCS Dec 2016

Stakeholders are (not only) people

• Every project has some 30±20 Stakeholders
• Stakeholders have a stake in the project
• The concerns of Stakeholders are often contradictory

• Apart from the Customer they don’t pay
• So they have no reason to compromise !

• Project risks, happening in almost every project
• No excuse to fail !

result

people

201BCS Dec 2016

Victims can be a big Risk

202BCS Dec 2016

Victims:
Narita Airport

203BCS Dec 2016

Their old system (cash cow)

Our new system We need the test-system of
the previous supplier

204BCS Dec 2016

What are the Requirements for a Project ?

• Requirements are what the Stakeholders require
but for a project ...
• Requirements are the set of stakeholder needs that

the project is planning to satisfy
This is what you’ll get, if you let us continue

• The set of Stakeholders doesn’t change much
• Do you have a checklist of possible Stakeholders ?
• What will happen if you forget an important Stakeholder ?

205BCS Dec 2016

No Stakeholder ?

• No Stakeholder: no requirements
• No requirements: nothing to do
• No requirements: nothing to test
• If you find a requirement without a Stakeholder:

• Either the requirement isn’t a requirement
• Or, you haven’t determined the Stakeholder yet

• If you don’t know the Stakeholder:
• Who’s going to pay you for your work?
• How do you know that you are doing the right thing?
• When are you ready?

206BCS Dec 2016

Exercise to create focus

• The most important stakeholder of your work
(Who is waiting for it?)

• The most important real requirement
(What is (s)he waiting for?)

• How much value improvement does this stakeholder expect
(3 or 7?)

• Was this the focus of your work the coming week ?

207BCS Dec 2016

Requirements

208BCS Dec 2016

Top level Requirement for any Project

• Delivering the Right Result at the Right Time,
wasting as little time as possible (= efficiently)

• Providing the customer with
• what he needs
• at the time he needs it
• to be satisfied
• to be more successful than he was without it

• Constrained by (win - win)
• what the customer can afford
• what we mutually beneficially and satisfactorily can deliver
• in a reasonable period of time

209BCS Dec 2016

Customer requirements ?

Nice input,
to be taken seriously

210BCS Dec 2016

Customer Specification

• What Wish Specification did you receive ?
• Write it down

• How did you receive it ?
• From whom ?
• What did you do with it ?

• Was it complete ?
• Was it clear ?
• Did it show the problem to be solved ? (or was it a solution ?)

211BCS Dec 2016

Do you have examples of requirements ?

212BCS Dec 2016

Need

How “off” to
warrant detection?

How “immediately?”

Is this a Requirement ?
or ‘nice input’, to be taken seriously ?

“Create a new ‘Price Sentinel’ component that can detect if the
bank’s published customer quotations go off-market, and then

to immediately cancel all current quotations.”

Design

Need

Ref http://rsbatechnology.co.uk

213BCS Dec 2016

Using 5 Whys

Why do you need a “Price Sentinel” ?

1. To prevent publishing off-market tradable prices

2. To prevent trading loss
(having to buy at a higher price than the bank offered to the customer)

3. To demonstrate to senior management that e-trading business
can safely (no unexpected loss) manage customer trading

4. To ensure that senior management will agree to expand
e-trading business in the future, based on current business
performance to other customer segments and business areas

5. To meet business medium / long-term financial targets

Ref http://rsbatechnology.co.uk

214BCS Dec 2016

First try

New ‘Price Sentinel’ component:
• detect if the bank’s customer quotations go off-market
• then immediately cancel all current quotations

• Off-market
• ?? – Our margin less than 0.1% ?? – Will have to investigate

• Immediately cancelling all current quotations
• Scale: seconds after <detection>
• Current: 600 sec (10 min)
• Goal: 1 sec

215BCS Dec 2016

Prioritize solutions by Impact Estimation

Kill button Price Sentinel
Cancel
600 → 1 sec

10.5 sec (note)

98%
1 sec
100%

Cost 1 day 30 day (6 sprint)
Note: 10 sec human recognition time, 0.5 sec cancel time

Kill button Price Sentinel
Cancel
600 → 1 sec
Cost

216BCS Dec 2016

Requirements with Planguage ref Tom Gilb

Definition:
RQ27:
Scale:
Meter:

Benchmarks (Playing Field):
Past:
Current:
Record:
Wish:

Requirements:
Tolerable:
Tolerable:
Goal:

Speed of Luggage Handling at Airport
Time between <arrival of airplane> and first luggage on belt
<measure arrival of airplane>, <measure arrival of first luggage on belt>,
calculate difference

2 min [minimum, 2014], 8 min [average, 2014], 83 min [max, 2014]
< 4 min [competitor y, Jan 2015] ← <who said this?>, <Survey Dec 2014>
57 sec [competitor x, Jan 2012]
< 2 min [2017Q3, new system available] ← CEO, 19 Jan 2015, <document ...>

< 10 min [99%, Q4] ← SLA
< 15 min [100%, Q4, Heathrow T4] ← SLA
< 15 min [99%, Q2], < 10 min [99%, Q3], < 5 min [99%, Q4] ← marketing

217BCS Dec 2016

Requirements weren’t the problem

• Requirements for tropospheric O3
• Ground-pixel size : 20 × 20 km2 (threshold); 5 × 5 km2 (target)
• Uncertainty in column : altitude-dependent
• Coverage : global
• Frequency of observation :

daily (threshold); multiple observations per day (target)
• Requirements for stratospheric O3

• Ground-pixel size : 40 × 40 km2 (threshold); 20 × 20 km2 (target)
• Uncertainty in column : altitude-dependent
• Coverage : global
• Frequency of observation :

daily (threshold); multiple observations per day (target)
• Requirements for total O3

• Ground-pixel size : 10 × 10 km2 (threshold); 5 × 5 km2 (target)
• Uncertainty in column : 2%
• Coverage : global
• Frequency of observation :

daily (threshold); multiple observations per day (target)

218BCS Dec 2016

Tom Gilb quote

• The fact that we can set numeric objectives, and track
them, is powerful; but in fact it is not the main point

• The main purpose of quantification is to force us
to think deeply, and debate exactly, what we mean

• So that others, later, cannot fail to understand us

219BCS Dec 2016

Requirements have Rules
Some examples:

Rule 1: All quality requirements must be expressed quantitatively
Rule 2: No design (solutions) in the requirements
Rule 3: Unambiguous
Rule 4: Clear to test

Typical requirements found:
• The system should be extremely user-friendly
• The system must work exactly as the predecessor
• The system must be better than before

• It shall be possible to easily extend the system’s functionality
on a modular basis, to implement specific (e.g. local) functionality

• It shall be reasonably easy to recover the system from failures,
e.g. without taking down the power

220BCS Dec 2016

Recent project

• 1600 requirements ‘big design up front’: just deliver
• ‘1600 requirements’ were solutions to an undefined problem
• No clear problem definition
• No clear goals
• No stopping criteria
• Customer hasn’t got anything useful yet (after 2 years)

• Will they be successful by the end of the year ?

221BCS Dec 2016

No Design in the Requirements, but ...

Needs:
what do we need

Options:
how can we do it Selected solution:

this is how we are going to do it

Design creates the
Requirements for the next level

Requirements

Design
Requirements

Design

Requirements

Design

Requirements

Design

goals and
stopping criteria
can be found here

222BCS Dec 2016

223BCS Dec 2016

We’re Agile and we’re using Scrum

• Oh dear !
• Dances and rituals
• Demo’s
• IT people think the’re doing a great job …
• Customer has nothing

224BCS Dec 2016

Wasting time everywhere

225BCS Dec 2016

Delivery Strategy Suggestions (Requirements)

• What we deliver will be used by the appropriate users immediately,
within one week not making them less efficient than before

• If a delivery isn’t used immediately, we analyse and close the gap
so that it will start being used (otherwise we don’t get feedback)

• The proof of the pudding is when it’s eaten and found tasty,
by them, not by us

• The users determine success and whether they want to pay
(we don’t have to tell them this, but it should be our attitude)

226BCS Dec 2016

Examples of Scales (re-use of Requirements !)

Availability
% of <Time Period> a <System> is <Available> for its <Tasks>

Adaptability
Time needed to <Adapt> a <System> from <Initial State> to <Final State>
using <Means>

Usability
Speed for <Users> to <correctly> accomplish <Tasks> when
<given Instruction> under <Circumstances>

Reliability
Mean time for a <System> to experience <Failure Type> under <Conditions>

Integrity
Probability for a <System> to <Cope-with> <Attacks> under <Conditions>
Define “Cope-with” = {detect, prevent, capture}

227BCS Dec 2016

Availability

• Dependability.Availability
• Readiness for service
• Scale: % of <TimePeriod> a <System> is <Available> for its <Tasks>

• Probability that the system will be functioning correctly
when it is needed

• Examples
• (preventive) maintenance may decrease the availability
• Snow on the road
• Telephone exchange (no dial tone) < 5 min per year (99.999%)

228BCS Dec 2016

Availability

Availability % Downtime
per year

Downtime
per month

Downtime
per week Typical usage

90% 36.5 day 72 hr 16.8 hr
95% 18.25 day 36 hr 8.4 hr
98% 7.30 day 14.4 hr 3.36 hr
99% 3.65 day 7.20 hr 1.68 hr
99.5% 1.83 day 3.60 hr 50.4 min
99.8% 17.52 hr 86.23 min 20.16 min
99.9% (three nines) 8.76 hr 43.2 min 10.1 min Web server
99.95% 4.38 hr 21.56 min 5.04 min
99.99% (four nines) 52.6 min 4.32 min 1.01 min Web shop
99.999% (five nines) 5.26 min 25.9 sec 6.05 sec Phone network
99.9999% (six nines) 31.5 sec 2.59 sec 0.605 sec Future network

229BCS Dec 2016

Quantified
Requirements

230BCS Dec 2016

How about your requirements ?

• Expressed quantitatively
• No design (solutions)
• Unambiguous
• Clear to test

231BCS Dec 2016

Did anyone prepare ?

• The Goal of your current work or project
• The Definition of Success
• The most important stakeholder (Who is waiting for it?)

• The most important requirement for this stakeholder (What is he waiting for?)

• How much value improvement does this stakeholder expect (3 or 7?)

• Any deadlines? (No deadlines: it will take longer)

• What you and your team should and can have achieved in the coming 10
weeks
(Will you succeed? If yes: great. If not: what could you do about it? - Failure is not an option!)

• What you think you should and can do the coming week to achieve what
you’re supposed to achieve
(How do you make sure that by the end of the week all of this will be done)

• Any issues you expect with the above or otherwise with your work or
project

232BCS Dec 2016

Requirements exercise: (groups of 2 or 3 people)

Specify a quality / performance requirement for your
current, previous or future project, using Planguage
Try to use:

Note: you may end up with a different requirement
than you started with …

Benchmarks:
• Past
• Current
• Record
• (Wish)

Requirements:
• Must/Fail/Tolerable
• Goal

Definition:
• Ambition
• Scale
• Meter
• Stakeholders

233BCS Dec 2016

Ambition

Scale

Meter

Stakehldrs

Past

Current

Record

Wish

Tolerable

Goal

234BCS Dec 2016

How to specify results
How to select
the right solution ?

235BCS Dec 2016

Requirements Case

• Organization collecting online giving for charities
• CEO: “Improve website to increase online giving for our

‘customers’ (charities)”
• Increasing market share for online giving
• Budget: 1M€ - 10 months
• Show results fast

Ref Ryan Shriver: ‘Measurable Value with Agile’
ACCU Overload Feb 2009, or
http://www.malotaux.nl/doc.php?id=10

• Organization collecting online giving for charities
• CEO: “Improve website to increase online giving for our

‘customers’ (charities)”
• Increasing market share for online giving
• Budget: 1M€ - 10 months
• Show results fast

• Organization collecting online giving for charities
• CEO: “Improve website to increase online giving for our

‘customers’ (charities)”
• Increasing market share for online giving
• Budget: 1M€ - 10 months
• Show results fast

236BCS Dec 2016

Objective: Monetary Donations

Name Monetary Donations

Scale Euro’s donated to non-profits through our website

Meter Monthly Donations Report

Monetary Donations

fail
12M

now
13M

goal
18M

Fail 12M
Now 13M [2008] ← Annual Report 2008
Goal 18M [2009]

Monetary Donations

Ref Ryan Shriver
ACCU Overload Feb 2009

237BCS Dec 2016

Objective: Volunteer Time (Natura) Donations

Name Volunteer Time Donations

Scale Hours donated to non-profits through our website

Meter Monthly Donations Report

Fail 2700 hr

Now 2800 hr [2008] ← Annual Report 2008

Goal 3600 hr [2009]

Volunteer Time Donations

fail
2700hr

now
2800hr

goal
3600hr

Ref Ryan Shriver
ACCU Overload Feb 2009

238BCS Dec 2016

Goal: Market Share

Name Market Share

Scale Market Share %% online giving

Meter Quarterly Industry Report

Fail 5%

Now 6% [Q1-2009] ← Quarterly Industry Report

Goal 10% [Q1-2010]

Market Share

fail
5%

now
6%

goal
10%

Ref Ryan Shriver
ACCU Overload Feb 2009

239BCS Dec 2016

Design Process

• Collect obvious design(s)

• Search for one non-obvious design

• Compare the relative ROI of the designs

• Select the best compromise

• Describe the selected design

• Books:
• Ralph L. Keeyney: Value Focused Thinking
• Gerd Gigerenzer: Simple Heuristics That Make Us Smart

240BCS Dec 2016

Impact Estimation example

Ref Ryan Shriver - ACCU Overload Feb 2009

Impact
Estimation

Monthly
Donations

Facebook
integration

Image & video
uploads

Total effect
for requirement

€€ donations
13M€ → 18M€

80%
±30%

30%
±30%

50%
±20%

160%
±80%

Time donations
2800hr→3600hr

10%
±10%

50%
±20%

80%
±20%

140%
±50%

Market share
6% → 10%

30%
±20%

30%
±20%

20%
±10%

80%
±50%

Total effect
per solution

120%
±60%

110%
±70%

150%
±50%

Cost - money
% of 1M€

30%
±10%

20%
±10%

50%
±20%

100%
±40%

Cost - time
% of 10 months

40%
±20%

20%
±10%

50%
±20%

110%
±50%

Total effect /
money budget

120/30 = 4
1.5 … 9

110/20 = 5.5
1.3 … 18

150/50 = 3
1.4 … 6.7

Total effect / time
budget

120/40 = 3
1 … 9

120/20 = 6
1.3 … 18

120/50 = 2.4
1.4 … 6.7

241BCS Dec 2016

Impact Estimation principle

Design
Idea #1

Design
Idea #2

Design
Idea #3

Total
Impact

Objectives Impact on
Objective

Impact on
Objective

Impact on
Objective

Sum of
Impacts on
Objectives

Resources
Time

Money

Impact on
Resources

Impact on
Resources

Impact on
Resources

Sum of
Impact on
Resources

Benefits to
Cost Ratio

Benefits
Cost

Benefits
Cost

Benefits
Cost

What to achieve

Cost to achieve it

Return on
Investment

Possible solutions to achieve it

How much % of what we
want to achieve do we

achieve by this solution

Could we get all,
within the budgets
of time and cost ?

At what cost ?

242BCS Dec 2016

More

• Booklets – www.malotaux.nl/booklets
• Email – niels@malotaux.nl
• Some coaching of your team (and your management)

on the spot

243BCS Dec 2016

Exercise

• What will you be doing differently after this ?
• Requirements not only for the product,

but now for how you do your work
• Is this also reflected in your weekly TaskList ?

Otherwise it may not happen

244BCS Dec 2016

Management
Issues

245BCS Dec 2016

adding valueinput output

people
resources

management

senior
management

Simple model of Management

30%

15%

100%

See www.malotaux.nl/managementmodel

246BCS Dec 2016

Local Loop Principle

Project Team

ManagementCoach

See www.malotaux.nl/localloop

247BCS Dec 2016

Finally

248BCS Dec 2016

Magic words

• Focus
• Priority
• Synchronize
• Why
• Dates are sacred
• Done
• Bug, debug
• Discipline

249BCS Dec 2016

Magic Sentences

• Customer may never find out about our problems
• Evo metric: Size of the smile of the customer
• Delivery Commitments are always met
• People tend to do more than necessary
• Can we do less, without doing too little
• What the customer wants, he cannot afford
• Who is waiting for it ?

• See more at http://www.malotaux.nl/?id=mantras

250BCS Dec 2016

My project is different

• On every project somebody will claim:
“Nice story, but my project is different.
It cannot be cut into very short cycles”

• On every project, it takes less than an hour (usually less
than 10 minutes) to define the first short deliveries

• This is one of the more difficult issues of Evo
We must learn to turn a switch
Coaching helps to turn the switch

251BCS Dec 2016

Morewww.malotaux.nl/booklets
1 Evolutionary Project Management Methods (2001)

Issues to solve, and first experience with the Evo Planning approach
2 How Quality is Assured by Evolutionary Methods (2004)

After a lot more experience: rather mature Evo Planning process
3 Optimizing the Contribution of Testing to Project Success (2005)

How Testing fits in
3a Optimizing Quality Assurance for Better Results (2005)

Same as Booklet 3, but for non-software projects
4 Controlling Project Risk by Design (2006)

How the Evo approach solves Risk by Design (by process)
5 TimeLine: How to Get and Keep Control over Longer Periods of Time (2007)

Replaced by Booklet 7, except for the step-by-step TimeLine procedure
6 Human Behavior in Projects (APCOSE 2008)

Human Behavioral aspects of Projects
7 How to Achieve the Most Important Requirement (2008)

Planning of longer periods of time, what to do if you don’t have enough time
8 Help ! We have a QA Problem ! (2009)

Use of TimeLine technique: How we solved a 6 month backlog in 9 weeks
RS Measurable Value with Agile (Ryan Shriver - 2009)

Use of Evo Requirements and Prioritizing principles

www.malotaux.nl/inspections
Inspection pages

252BCS Dec 2016

Niels Malotaux

+31 655 753 604 niels@malotaux.nl www.malotaux.nl

Planning for
Quality Delivery
Producing even more
business value in less time

www.malotaux.nl/conferences

253BCS Dec 2016

Agile or agile ?

254BCS Dec 2016

What is Agile ?

• A philosophy (Agile Manifesto)

255BCS Dec 2016

The Agile Manifesto (2001)

We are uncovering better ways of developing software by
doing it and helping others do it

Through this work we have come to value:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

That is, while there is value in the items on the right, we value
the items on the left more

256BCS Dec 2016

From the Principles behind the Agile Manifesto
• Our highest priority is to satisfy the customer through early and

continuous delivery of valuable software
Software is always part of a system

• We welcome changing requirements, even late in development
We can handle them late, but early is better
If requirements have to change, let’s provoke requirements change as quickly as possible

• We deliver working software frequently;
Working software is the primary measure of progress
What we deliver simply works.
If the working software doesn’t do what it should, is that a measure of progress?

• Business people and developers must work together daily
Do they ? Should they ? Daily ?

• Simplicity - the art of maximizing the amount of work not done
The art of not doing what is superfluous ! Why make it complex if we can keep it simple ?

• At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behaviour accordingly
Not just retrospectives, but more importantly: prespectives

257BCS Dec 2016

What is Agile ?

• A philosophy (Agile Manifesto)

• agile = ability to move quick, easily and adaptably

• Short iterations – not one Waterfall

• Delivering value (do we measure progress towards real value ?)

• Retrospectives (retrospectives on retrospectives: did it really work ?)

• Not a standard: You can make of it whatever you want

• XP - focus on software development techniques

• Scrum - very basic short term organization of development

• Are you agile if you religiously focus on a ‘method’ ?

258BCS Dec 2016

The past was already ahead
• Managing the development of large software systems - Winston Royce - 1970

• Famous ‘Waterfall document’: figure 2 showed a ‘waterfall’
• Text and other figures showed that Waterfall doesn’t work
• Anyone promoting Waterfall doesn’t know or didn’t learn from history

• Cleanroom software engineering - Harlan Mills - 1970’s

• Incremental Development - Short Iterations
• Defect prevention rather than defect removal
• Inspections to feed prevention
• No unit tests needed
• Statistical testing
• If final tests fail: no repair - start over again
• 10-times less defects at lower cost
• Quality is cheaper

• Evolutionary Delivery - Evo - Tom Gilb - 1974, 1976, 1988, 2005

• Incremental + Iterative + Learning and consequent adaptation
• Fast and Frequent Plan-Do-Check-Act
• Quantifying Requirements - Real Requirements
• Defect prevention rather than defect removal

259BCS Dec 2016

XP – eXtreme Programming

• Planning Game

• Metaphor

• Simple Design

• Testing (TDD)

• Refactoring

• Coding standards

• Small releases

• Pair programming

• Collective Ownership

• Continuous integration

• 40-hour week

• On-site customer

Original project was not successful
as soon as the writer of the book left the project

260BCS Dec 2016

Scrum
• Sprint

• 1 – 4 weeks
• Sprint Planning meeting
• Sprint Review meeting
• Sprint Retrospective

• Artefacts
• Product backlog
• Sprint backlog
• Sprint burn down chart

• Roles
• Scrum Master (facilitates, coaches on rules)
• Team – multifunctional (design, develop, test, etc)
• Product Owner – voice of customer

• Daily Scrum - Stand-up meeting
a. What have you done since yesterday
b. What are you planning today
c. Impediments limiting achieving your goals ?

261BCS Dec 2016

It’s not the method

If the previous method didn’t work, the next won’t work either

CMM XP Scrum
Lean
Kanban

now

time →

← Hypes
(which one do you follow ?)

DevOps

262BCS Dec 2016

What’s usually missing in Agile ? Ref Tom Gilb

Stakeholder Focus
• Real projects have dozens of stakeholders

• Not just a customer in the room, not just a user with a use case or story

Results Focus
• It is not about programming, it is about making systems work, for real people

Systems Focus
• It is not about coding, but rather:

reuse, data, hardware, training, motivation, sub-contracting, outsourcing,
help lines, user documentation, user interfaces, security, etc.

• So, a systems engineering scope is necessary to deliver results
• Systems Engineering needs quantified performance and quality objectives

Planning Ref Niels Malotaux
• Retrospectives within the Sprint
• Retrospectives of retrospectives
• Planning what not to do → preflection - prespectives
• Overall planning and prediction: when will what be done

