

The Evolutionary Approach

For Continuous Improvement of What We Do

Delivered by Niels Malotaux

Presenter

Mr. Niels Malotaux

Project and Organizational Coach

Helping projects and organizations to quickly become

- More effective
- doing the right things better
- More efficient
- doing the right things better in less time
- efficient o
- Predictable
- delivering as needed

Result Management

Getting projects back on track

Helping with Architecture/Design/Review of Electronics/Firmware/Software

Project Types: Electronic Products, Firmware, Software, Space, Railway, Telecom, Industrial Control, Parking System

The Evolutionary Approach for Quality on Time

Do your projects deliver Quality on Time?

The ultimate goal of what we do for our salary

- Delivering the **Right Results at the Right Time**, wasting as little time as possible (=efficiently)
- Providing the customer with:
 - What they need
 - At the time they need it
 - To be satisfied
 - To be more successful than they were without it
- Constrained by:
 - What the customer can afford
 - What we mutually beneficially and satisfactorily can deliver
 - In a reasonable period of time

Quality on Time is a 'Nice Goal'...

...BUT HOW?

Saving Time

We can save time without negatively affecting the result!

Efficiency in what, why, for whom we do

- Doing the right things
- NOT doing what later proves to be not needed

Efficiency in how we do it

- Doing things differently
- The Product
 - Using the proper and most efficient solution instead of the solution we always used
- The Project Doing the same in less time, instead of immediately doing it the way we always did
- Continuous improvement and prevention processes

Constantly learning to do things better and overcoming bad tendencies

Efficiency in when we do it

- At the right time
- In the right order

Time Boxing

- Much more efficient
 - than Feature Boxing!

CONTINUOUS ELIMINATION OF WASTE

Plan – Do – Check – Act: The Powerful Ingredient for Success

CHECK

Evolutionary Project Management (Evo)

Whv?

How?

What?

How much?

Plan-Do-Check-Act on every level

- Zero Defects
 - Prevention costs less than repair
- Business Case
 - Why are we going to improve what?
- Requirements Engineering
 - What are we going to improve? What not? Are we done?
 - How much will we improve? Quantification
- Architecture and Design
 - Selecting the optimum compromise for conflicting requirements
- Early Review and Inspection
 - Measuring quality while doing, learning to prevent doing the wrong things.
 Check as early as possible

Weekly Task Cycle Short-Term Planning

- Optimising Estimation
- Promising what we can achieve
- Living up to our promises

Ei-Weekly Delivery Cycle

Effectiveness of what we do

Efficiency of

what we do

- Optimising the requirements and checking assumptions
- Soliciting feedback by delivering real results to eagerly waiting stakeholders
- Timeline What will happen and what will we do about it?
 - Getting and keeping control of time: predicting the future
 - Feeding program/portfolio/resource management

Time Line

TimeLine

- How do we know that we get what is needed when it's needed?
- Better 80% 100% done, than 100% 80% done.
- Let it be

the most important 80%

Starting Deadlines

Even more important...

Starting Deadline

- Last day to start,
 - to make the finish deadline
- Everyday we start later,

we will end later

Starting Deadline

- Buying trains from the catalogue, but some changes
- Cannot change everything: limited set of focus areas
- Example:
 - Lifting train for maintenance
 - Supplier lift

- Maintenance cable
- How much time left ?

Supplier people already working on the final design

- What still to do? Does that fit the available time? Talk to our maintenance, talk to supplier, decision, agreement
- Why waste your time ?
- What is Plan B?

Evolutionary Project Management (Evo)

Why?

How?

What?

How much?

Plan-Do-Check-Act on every level

- Zero Defects
 - Prevention costs less than repair
- Business Case
 - Why are we going to improve what?
- Requirements Engineering
 - What are we going to improve? What not? Are we done?
 - How much will we improve? Quantification
- Architecture Design
 - Selecting the optimum compromise for conflicting requirements
- Early Review and Inspection
 - Measuring quality while doing, learning to prevent doing the wrong things. Check as early as possible

Weekly TaskCycle

What are we going to do, what not, and why

Removing Waste Before Time Spent

- Are we doing the right things?
 - In the right order
 - To the right level of detail for now
- Optimising estimation, planning, and tracking abilities
 - To better predict the future
- Select highest priority tasks
 - Never do any lower priority tasks
 - Never do undefined tasks
- There are only about 26 plannable hours in a week (default 2/3)
 - In the remaining time, do whatever else you have to do
- Tasks are always done, 100% done

Weekly TaskCycle

What are we going to do, what not, and why

Weekly Plan

- How much time do we have available
- 2/3 of available time is net plannable time
 - 2/3 is default start value. This value works well in development projects
- What is most important to do
- Estimate effort needed to do these things
- Which most important things fit the available time
 - Default 26 hours per week
- What can, and are we going to do
- What are we **not** going to do

Weekly Planning

Minimising Time Spent on Planning

Individual Preparation

- Conclude current tasks
- What to do next
- Estimates
- How much time is available

Modulation / coaching 1-on-1

- Status
 - Previous tasks done, completely done, no need to think about it anymore?
- Priority Check
 - Are the new tasks really the most important things?
- Feasibility
 - Will it be done by the end of the week?
- Commitment and Decision

Synchronisation with group (team meeting)

- Synchronisation
- Formal Confirmation
 - This is what we plan to do
- Concurrency
 - Do we have to synchronize?
- Learning
- Helping
- Socialising

New Oscilloscope Platform

- 4 teams of 10 people, 8 more people in Bangalore
- Introduced first in one team
- Other teams followed once convinced
- One team lagged because fear of 'micro-management'

Heard at 1-on-1:

- Wow! Even if we would drop all you suggested, the 1-on-1's will be kept, because so powerful:
 - We used to do something, and afterwards found out it wasn't what it should be
 - Now we find out before, allowing us to do it more right-the-first-time

Results

Product manager:

- Schedule accuracy for this platform development was
 50% better than the program average over the last 5 years
 (as measured by program schedule overrun)
- This product was the fastest time-to-market with the highest quality at introduction of any platform in our group in more than 10 years
- The team also won a prestigious **Team Award** as part of the company's Technical Excellence recognition program

www.malotaux.eu/doc.php?id=19 chapter 4.7.1, page 70

42

Quantified Requirements

- **Scale:** Time in minutes to do a <specific task>
- **Meter:** Measure <defined users> doing these tasks
- **Past:** 65 minutes [<specific user>]
- **Tolerable:** 35 minutes
- Goal: 25 minutes

Nice Requirements

- Handle up to 400 cars per hour 9 sec per car
- Approval to enter: < 3 sec
- Uptime 99,95% downtime: 4.4 hr / yr @400 cars per hour → 1750 missed per year → deemed acceptable
- Response time < 150msec
- Max screen build up time < 500ms
- Life span 15 years
- Can you put a system at our office entrance?
 - Took several months
 - Approval to enter: 7 sec
 - Can the architecture handle improving from 7 to <3 sec?

Earth Observation Satellite

26

On Time

Earth Observation Satellite

- Very experienced Systems Engineers
- One problem: They missed all deadlines
- Can you help us?
- Taught them 'Quality on Time' Evo Planning
- 9 weeks later: haven't missed a deadline since
- 2.5 years later: delivered 1 day early (instead of expected 1 year late)
- Savings: at least 40 man-years (about €6million?)

Awful Schedule Pressure!

	Doc 1	Doc 2	Doc 3	Doc 4	Doc 5	Doc 6	Doc 7
John	х		х	х	х	х	
Samuel	х	х		х		х	х
Paul	х	х	х	х	х	х	Х
Michael	Х			Х	Х		
Marc			х	Х		Х	х

Per Doc		Hour
4 Heavy	15	60
3 Easy	2	6
Other Work	Total	66 33
	Total	99
Available	2x26	52

Problem - Solution

- Meeting with sub-contractors in three weeks
- 2 weeks to review documents
- "Impossible deadline"
- How many documents to review ?
- How much time per document?
- How much time available ?
- Some suggestions...
- Result: well reviewed, great meeting, everyone satisfied

The Evolutionary Approach for Quality on Time

Will your projects deliver Quality on Time from now on?