
1 Evo - Keio-SDM - Oct 2010

Niels Malotaux

+31-30-228 88 68 niels@malotaux.nl www.malotaux.nl

Predictable Projects
How to get the Right Result at the Right Time

2 Evo - Keio-SDM - Oct 2010

Niels Malotaux

• Project Coach
• Evolutionary Project Management (Evo)

• Requirements Engineering

• Reviews and Inspections

• Researching problems in projects

• Finding ways for fundamentally overcoming these
problems

• Ploughing back into projects

• Tuning of the results (because theory isn’t practice)

3 Evo - Keio-SDM - Oct 2010

4 Evo - Keio-SDM - Oct 2010

5 Evo - Keio-SDM - Oct 2010

6 Evo - Keio-SDM - Oct 2010

7 Evo - Keio-SDM - Oct 2010

8 Evo - Keio-SDM - Oct 2010

9 Evo - Keio-SDM - Oct 2010

10 Evo - Keio-SDM - Oct 2010

11 Evo - Keio-SDM - Oct 2010

Who are you ?

*

12 Evo - Keio-SDM - Oct 2010

Projects

• Who’s working in projects?

• What is a project ?

• Who is a Project Manager ?

• Who is a Systems Engineer ?

• Who is something else ?

• Who has Project Result responsibility ?

13 Evo - Keio-SDM - Oct 2010

How good are you in your current work?

• Average?

• Better than average?

• Below average?

14 Evo - Keio-SDM - Oct 2010

Predictable Projects ?

• Any problems with projects ?

*

15 Evo - Keio-SDM - Oct 2010

Types of project ?

• Process development

• Product development

• Software development

• Systems

• Systems of Systems

• … ?

16 Evo - Keio-SDM - Oct 2010

Time Important ?

• Yes !

• Extremely yes !

• Yes, for our business case; no, customers don’t care much

• Yes, it saves cost

• Yes, it’s a requirement

• Yes, it’s our commitment to the customer

(previous workshop)

17 Evo - Keio-SDM - Oct 2010

Things to Improve

• Time is first priority after product quality

• How to make project management more efficient

• Systems Architecture and Design

• Project Management

• Time and Cost Management

• Documentation

• Predictable Schedule

• Communication

• Quality of requirements and final products

• Project quality
(previous workshop)

18 Evo - Keio-SDM - Oct 2010

Quality On Time (previous workshop)

Successful On Time Need improvement

Quality and cost OK 81% overrun Time is first priority

Normally yes, with good
plan and people

Normally yes More efficient PM

Yes Yes Improve Design
Competence and Planning

Yes, customer happy Yes Time/Cost Management

Yes No, many changes,
component delay
(Customers don’t mind)

Documentation, Schedule

Result OK Later (req/staff changes) Predictable schedules

Some Later Schedule

No. Long project, change
req  bad product quality

Maybe Quality of requirements
and results

Usually Usually or bit later Project quality

19 Evo - Keio-SDM - Oct 2010

How to improve

• CMMI

• Project planning tool

• Skill of team on Project Management

• Improve design competence

• Good planning

• Don’t know

• Breaking down to small tasks

• Stable staffing

• Stick with requirements; better prioritizing

• Using PMBOK

• Iterative delivery & customer cooperation
(previous workshop)

20 Evo - Keio-SDM - Oct 2010

The Right Result at the Right Time

• Do you regularly deliver the Right Result at the Right Time ?

• Why not ?

• Is this normal ?

• Can we do something about it ?

• What is the Right Result ?

• What is the Right Time ?

21 Evo - Keio-SDM - Oct 2010

Not every project is successful
(at first)

• Apparently we’re doing something wrong

• Otherwise projects would succeed and be on time

• Heathrow Terminal 5: “Great success !”
• Normal people aren’t interested in the technical details of a terminal

• They only want to check-in their luggage as easily as possible
and

• Get their luggage back as quickly as possible in acceptable condition
at their destination

• They didn’t

• One of the problems is to determine
what the project (or your work in general) really is about

22 Evo - Keio-SDM - Oct 2010

AHOB (Automatic Half Barrier Crossing)

23 Evo - Keio-SDM - Oct 2010

ADOB
(Automatic Double Barrier Crossing)

1 train every 4 minutes

Few years of trouble
before some stability

At >22oC still trouble

Why it didn’t work
is irrelevant

What we deliver
should simply work

Is that so difficult?

24 Evo - Keio-SDM - Oct 2010

Tunnels in the Netherlands

• 18-02-2008: tunnels open for traffic.
A73 (42km) is now complete ! (decision 1975)

• V&V said “NO!”  Lots of trouble

• 03-03-2008: tunnels are finally open, after
safety tests concluded

• 10-03-2008: tunnels are finally open, after
safety tests concluded

• 06-06-2008: Coming months we’re working
on completion of the A73 tunnels

• 24-09-2008: start of completion in
January 2009 and/or April 2009

• 24-09-2009: Completion runs as planned.
Tunnels will be closed from 1 October.
1 December the tunnels will finally open

• 28-01-2010: Tunnels will have weekend closures
for “regular maintenance”

25 Evo - Keio-SDM - Oct 2010

Incredible
Public Transport
Chip-Card

Cannot
process

Check
out

here

Other messages:

• Invalid card
• Err. 034

26 Evo - Keio-SDM - Oct 2010

The problem

• Many projects don’t deliver the right Results

• Many projects deliver late

or, more positively:

• I want my project to be more successful

• In shorter time

27 Evo - Keio-SDM - Oct 2010

Do we mind?

• Does anybody mind
• projects being late

• delivering inferior quality

• costing too much … ?

28 Evo - Keio-SDM - Oct 2010

Can we afford it?

• Can we afford
• projects being late

• delivering inferior quality

• costing too much ….. ?

• Finally we all pay !

• What are we going to do about it ?

29 Evo - Keio-SDM - Oct 2010

Goals

• Knowing how you can optimize the Results
of your daily work

• How to optimize the Results of your projects

• Creating a desire to start using this knowledge
immediately

30 Evo - Keio-SDM - Oct 2010

Predictable Projects How to Get Quality On Time

• Introduction

• Is Culture an Issue ?

• Quality On Time

• Human Behavior

• Project Life Cycles

• Evolutionary Principles

• Evolutionary Planning

• Business Case

• Stakeholders & Requirements

• Design & Architecture

• Risk

• V&V / Testing / QA

• Reviews & Inspections

• Metrics

• Some Management Issues

• Introduction Issues

31 Evo - Keio-SDM - Oct 2010

Ultimate Goal of a Project

• Delivering the Right Result at the Right Time,
wasting as little time as possible (= efficiently)

• Providing the customer with
• what he needs

• at the time he needs it

• to be satisfied

• to be more successful than he was without it

• Constrained by (win - win)

• what the customer can afford

• what we mutually beneficially and satisfactorily can deliver

• in a reasonable period of time

32 Evo - Keio-SDM - Oct 2010

What are you providing your customer ?

• Who is your customer ?

• What does he need ?

• When does he need it ?

• Will he be happy with it ?

• Will he be more successful ?

• Can the customer afford it ?

• Is it win-win ?

• Providing the customer with

• what he needs

• at the time he needs it

• to be satisfied

• to be more successful than he
was without it

• Constrained by (win - win)

• what the customer can afford

• what we mutually beneficially
and satisfactorily can deliver

• in a reasonable period of time

33 Evo - Keio-SDM - Oct 2010

What’s wrong with
projects ?

2/3 of IT projects still fail on

Quality On Time

 1994 1996 1998 2000 2002 2004 2009

Succeeded 16% 27% 26% 28% 34% 29% 32%

Challenged 53% 33% 46% 49% 51% 53% 44%

Failed 31% 40% 28% 23% 15% 18% 24%

Standish Group International

However
• “Succeeded” projects actually were late from the beginning:

Management told that they multiplied “best guess” by 2.5
• Perhaps the “Failed” projects were killed early for a good reason

Succeeded

Challenged

Failed

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1994 1996 1998 2000 2002 2004

delivered on time, on budget,
with required features and functions

late, over budget and/or with less than
the required features and functions

cancelled prior to completion
or delivered and never used

34 Evo - Keio-SDM - Oct 2010

Top 5 success factors:

1. Executive Support

2. User Involvement

3. Experienced Project Manager

4. Clear Business Objectives

5. Minimized Scope

Standish Group International

35 Evo - Keio-SDM - Oct 2010

Is Culture an Issue ?

36 Evo - Keio-SDM - Oct 2010

Culture

• Latin: Cultus - adoration, worship

• Culture: Ingrained customs
• Things we learn by mimicking what we experience around us

• Language

• Social behavior

• Faith, religion

• Folklore

• Doing what we’re used to

• We don’t really know why we do it, or even that we do it; we just do it

• Experience  intuition  culture

• Not genetic (that would be instinct)

• Once we see other cultures,
we can see that our own culture isn’t obvious at all; neither is theirs

• Still we judge others through our own cultural spectacles,
whether we like it or not

37 Evo - Keio-SDM - Oct 2010

Cultural differences ? influences on project results ?

Dutch

• open, direct, explicit, blunt
• informal
• arrogant
• preaching
• assertive
• can say no
• egalitarian, not showing

wealth
• little power distance
• authority must be earned
• little brand value
• not spending more than

necessary
• consensus
• win-win

Japanese ?

• …
• …
• … ?

38 Evo - Keio-SDM - Oct 2010

Things I heard

• Authority
• Boss is always right

• Teacher is always right
They are just doing their best. Lot of experience. However, are they perfect ?

• Group is important
• Project team is a group; organization is a group

• Self ?

• Group is responsible
• No personal responsibility ?

• Should we hide for responsibility ?

39 Evo - Keio-SDM - Oct 2010

Things I heard (2)

• Losing ‘face’
• We are not perfect, but the customer should never find out

• Cannot say ‘No’
• How do you then say ‘no’ ?

(in Holland we say: “Yes, but …”)

• Is that clear? - Yes
• ‘Yes’ isn’t always ‘Yes’

• If you don’t understand:
• Is the teacher unclear ?

• Am I stupid ?

40 Evo - Keio-SDM - Oct 2010

The boss is always right

• Is he or she ?

• Afraid for losing ‘face’ ?

• How about losing face invisibly ?
(you don’t say it, but you know)

• Would you like that if you were a boss ?

• How do we tell, without losing ‘face’ ?

• Should we ?

• Is it my culture ?

41 Evo - Keio-SDM - Oct 2010

4 week project

 25% 25% 25% 25%

 10% 90%

 10% 10% 80%

 10% 10% 10% 70%

42 Evo - Keio-SDM - Oct 2010

Is culture a risk for projects ?

*

43 Evo - Keio-SDM - Oct 2010

If we want to be winners

• People make mistakes

• We are people

• We make mistakes

• Mistakes cause problems

• We don’t want problems

• Let’s uncover our mistakes as quickly as possible,
so that we can do something about it

• Let’s help each other

• We cannot help each other, if we don’t know

44 Evo - Keio-SDM - Oct 2010

Quality on Time
The Right things at the Right time

45 Evo - Keio-SDM - Oct 2010

Quality On Time

• Whatever we do in a project,
at a certain moment there should be a Result

• How do we get the Right Result at the Right Time?

• Or shorter: Quality On Time

• What the Customer needs, when he needs it,
to earn more than we need

Fatal
Date now

TimeLine

Result

46 Evo - Keio-SDM - Oct 2010

Quality On Time

• What is Quality?

• What is On Time?

47 Evo - Keio-SDM - Oct 2010

Quality - the Right Results

• I know it when I see it …?

• Should be measurable

• Should be predictable

• But ...
ultimately they must like it when they see it

48 Evo - Keio-SDM - Oct 2010

Quality guru’s

• Shewhart - Economic Control of Quality 1930

• Deming - Japan 1950, Out of the crisis 1986

• Juran - Japan 1954, Quality handbook 1951

• Crosby - Zero Defects 1961, Quality is Free 1979

• Imai - Kaizen 1986, Gemba Kaizen 1997

49 Evo - Keio-SDM - Oct 2010

Deming - Juran - Crosby


 n

um
be

r o
f d

ef
ec

ts

 time

.. .
.

. .
.

. .
.

. .
Deming

Statistical Control


 n

um
be

r o
f d

ef
ec

ts

 time

.. .
.

. .
.

.
. .

Juran
Managerial

Breakthrough


 n

um
be

r o
f d

ef
ec

ts

 time

..

Crosby
Zero Defects

50 Evo - Keio-SDM - Oct 2010

Deming

• Quality comes not from inspection (V&V),
but from improvement of the production process

• Inspection does not improve quality, nor guarantee quality

• It’s too late

• The quality, good or bad, is already in the product

• You cannot inspect quality into a product

51 Evo - Keio-SDM - Oct 2010

Absolutes of Quality

• Conformance to requirements

• Obtained through prevention

• Performance standard is zero defects

• Measured by the price of non-conformance (PONC)

Philip Crosby, 1970

• The purpose is customer success (not customer satisfaction)

Added by Philip Crosby Associates, 2004

52 Evo - Keio-SDM - Oct 2010

Is Zero Defects possible?

• Zero Defects is an asymptote

• When Philip Crosby started with Zero Defects in 1961,
errors dropped by 40% almost immediately

zero defects

“acceptable
 level”in
je

ct
io

n
of

 d
ef

ec
ts

 

time 
0

53 Evo - Keio-SDM - Oct 2010

Attitude

• As long as we think Zero Defects is impossible,
we will keep producing defects

• From now on, we don’t want to make mistakes any more

• We feel the failure (if we don’t feel failure, we don’t learn)

• If we deliver a result, we are sure it is OK and we’ll be
highly surprised when there proves to be a defect after all

• We do what we can to improve (continuous improvement)

54 Evo - Keio-SDM - Oct 2010

Cost of Quality
Model

Project Cost

Cost of PerformanceCost of Quality

Cost of
NonConformance

Cost of
Conformance

Prevention CostsAppraisal Costs

• Training
• Methodologies
• Tools
• Policy & Procedures
• Planning
• Quality Improvement
 Projects
• Data Gathering &
 Analysis
• Fault Analysis
• Root Cause Analysis
• Quality Reporting

• Reviews
 • System Requirements
 • Design
 • Test Plan
 • Test Procedures
• Walkthroughs
• Inspections
• Testing (First Time)
• IV&V (First Time)
• Audits

• Re-reviews
• Re-tests
• Fixing Defects
 • Implementation
 • Documentation
• Rework
• CCB
• Engineering Changes
• Lab Equipment Costs of
 Retests
• Files Failures Repairs
• Consequences to Name,
 Reputation

• Generation of Plans,
 Documentation
• Development of:
 • Requirements
 • Design
 • Implementation
 • Integration

After Ref. Raytheon in CMU/SEI-95-TR-017

Improvement Initiative

55 Evo - Keio-SDM - Oct 2010

Cost of Quality

0%

10%

20%

30%

40%

50%

60%

1988 1989 1990 1991 1992 1993 1994 1995

%
 P

ro
je

ct
 C

os
t

Ref. Raytheon in CMU/SEI-95-TR-017

Start of Effort

Bad Process
Change

Individual
Learning

Effect

% Cost of Conformance

% Cost of NonConformance

% Cost of Quality

Cost of
Doing it Right

Cost of
Doing it Wrong

Cost of
Quality

56 Evo - Keio-SDM - Oct 2010

Productivity gains

0%

10%

20%

30%

40%

50%

60%

1988 1989 1990 1991 1992 1993 1994 1995

%
Pr

oj
ec

t C
os

t

Ref. Raytheon in CMU/SEI-95-TR-017

Start of Effort

Cost of
Doing it Right

Cost of
Doing it Wrong

Cost of
Quality

10%

20%

30%

40%

50%

60%

70%

80%

Factor 2.3

57 Evo - Keio-SDM - Oct 2010

Peter Drucker

Quality in a service or product is not what you put into it

It is what the client or customer gets out of it

58 Evo - Keio-SDM - Oct 2010

On Time

• Yesterday?

• Before the next exhibition?

• Managers dream?

• Time to market?

• Time to profit?

Compromise between what is needed
and what is possible

59 Evo - Keio-SDM - Oct 2010

Are you Serious about Time?

• Is Time Important ?

• Do you mind time ?

• Does your boss mind time ?

• Does your customer mind time ?

• Are you always on time ?

60 Evo - Keio-SDM - Oct 2010

Is it difficult to be on time ?

• Did anyone miss a plane ?

• What did you feel ?

• Why did it happen ?

• Did it happen again ?

61 Evo - Keio-SDM - Oct 2010

Time as a Requirement

• Delivery Time is a Requirement,
like all other Requirements

• How come most projects are late ???

• Apparently all other Requirements
are more important than Delivery Time

• Are the really?

62 Evo - Keio-SDM - Oct 2010

Fallacy of ‘all’ requirements

• “We’re done when all requirements are implemented”

• Isn’t delivery time a requirement ?

• Requirements are always contradictory

• Perception of the requirements

• Who’s requirements are we talking about ?

• Do we really know the real requirements ?

• Are customers able to define requirements ?
• Customers specify things they do not need

• And forget things they do need

• They’re even less trained in defining requirements than we are

• What we think we have to do should fit the available time

• Use the Business Case

63 Evo - Keio-SDM - Oct 2010

Will your current project be on time ?

• Was your previous project successful and on time ?

• Will your current project be successful and on time ?

• How do you know ?

64 Evo - Keio-SDM - Oct 2010

If our previous project was late,
our current project will also be late

unless we do things differently and better

If we don’t learn from history,
we are doomed to repeat it

Projects don’t have to be late

They deserve better

65 Evo - Keio-SDM - Oct 2010

But we’re not Project Managers !

• What caused the project being late ?

• Could we have prevented the project being late ?

• Was delivery time important ?

• Was delivery time a requirement ?

• Were all other requirements really more important ?

66 Evo - Keio-SDM - Oct 2010

What could we have done to save time?

*

67 Evo - Keio-SDM - Oct 2010

Who’s Responsible for the Result of the Project ?

• The Project Manager is responsible for delivering
the right result at the right time

• The Project Workers work and decisions determine
the result and the time it is delivered

• This makes everybody in the project implicitly
as responsible as Project Management

68 Evo - Keio-SDM - Oct 2010

Types of Project Management

1. There is no project leader

2. He does not know, others don’t know or
nobody knows what it means

3. Project follower:
Hopes it will get on track eventually

4. Project leader: vision, strategy, scenario’s, first time
right, zero defects, time to market: makes it happen

Projects without project leader fail
(even one-person projects !)

 Projects with more than one project leader also fail

69 Evo - Keio-SDM - Oct 2010

Architect  Project Manager

• Architect: Master Builder

• Architect is the conductor of the Product

• Project Manager is the conductor of the Project

• There is only one captain on the ship:
the Project Manager

• Test Manager is the conductor of the Test Process

• Systems Engineer is a kind of Architect

70 Evo - Keio-SDM - Oct 2010

PM and SE/Architect are like Conductors

• Project Manager is the conductor of the Project
• Vision and techniques to organize the project

• Systems Engineer/Architect is the conductor of the Product
• Vision and techniques to realize the product

• However, there should be only one captain on the ship

71 Evo - Keio-SDM - Oct 2010

Systems Engineers

• Other Engineers (?)
• Silo thinking

• Sub-optimizing

• Gold plating (hobbies)

• Little attention to interfaces

• Projects are always multidisciplinary

• Systems Engineers
• Multi-dimensional thinking

• Optimizing design decisions over all dimensions

• Whole life-cycle (cradle to cradle)

• Balancing requirements

• Including delivery time

• All disciplines  interdisciplinary

72 Evo - Keio-SDM - Oct 2010

Multidisciplinary  Interdisciplinary

• Tension between
• Technologically possible

• Economically profitable

• Socially and psychologically acceptable

• All kinds of disciplines needed for a good solution

• Multidisciplinary
• Many disciplines work in the project

• Optimize solution in their own domain

• Interdisciplinary
• Many disciplines work together in the project

• Overall-optimizing

• First developing the problem before developing the solution

73 Evo - Keio-SDM - Oct 2010

Causes of Delay

• Some typical causes of delay are:
• Developing the wrong things

• Unclear requirements

• Misunderstandings

• No feedback from stakeholders

• No adequate planning

• No adequate communication

• Doing unnecessary things

• Doing things less cleverly

• Waiting (before and during the project)

• Excuses, excuses: it’s always “them”. How about “us” ?

• A lot of delay is avoidable and therefore unjustifiable

• Changing requirements

• Doing things over

• Indecisiveness

• Suppliers

• Quality of suppliers results

• No Sense of Urgency

• Hobbying

• Political ploys

• Boss is always right (culture)

74 Evo - Keio-SDM - Oct 2010

The challenge

• Getting and keeping the project under control

• Never to be late

• If we are late, we failed

• No excuses when we’re not done at the FatalDay

• Not stealing from our customer’s (boss) purse

• The only justifiable cost is the cost of developing
the right things at the right time

• The rest is waste

• Would we enjoy producing waste ?

75 Evo - Keio-SDM - Oct 2010

FatalDay

• FatalDay is the last moment it shall be there

• After the FatalDay, we’ll have real trouble
if the Result isn’t there

• Real Option Theory says that we should do things as late as
possible, but not later
• As late as possible, having the most up-to-date information

to decide what to do
• Not later: the option has expired; it has no value any more

• Count backwards from the FatalDay to know when we
should have started

• If that’s before now, what are we going to do
about it, because failure is not an option

76 Evo - Keio-SDM - Oct 2010

Project ROI

Return on Investment (ROI)
+ Benefit of doing - huge (otherwise other projects would be more rewarding)

– Cost of doing - project cost, usually minor compared with other costs

– Cost of doing nothing - every day we start later, we finish later

– Cost of being late - lost benefit

doing nothing doing benefit

idea start done

77 Evo - Keio-SDM - Oct 2010

Time to market

• 5000 products per year  20 products per day

• € 5000 per product

• Profit € 500 per product

• Profit € 10.000 per day

Every day we start later, we’ll be done a day later

and miss € 10.000

78 Evo - Keio-SDM - Oct 2010

Cost of one day of delay

• Do you know how much you cost per day?
Note: that’s not what you get !

• New electronic measuring instrument
• 40 people in Oregon, US

• 8 people in Bangalore, India

• US$ 40,000 per day for the project

• Plus US$ 30,000 per day for lost benefit

• Total: US$ 70,000 per day for every day of (unnecessary) delay

• 0th order estimations are good enough

79 Evo - Keio-SDM - Oct 2010

The Cost of Time

• We can save 4 months by investing €200k

• It’s a nicer solution - Let’s do 2 weeks more research on the benefits

• What are the expected revenues when all is done?

• So 2 weeks extra doesn’t cost €10k, but rather €16M/24 = €670k

• And saving 4 months brings €16M/3 = €5M extra

 Invest that €200k NOW and don’t waste time !

-1

Start

2 3 4 5 6 7 8 9 10 1

End

4 months = €160k

10 months x 4 people x € 500/day = €400k

1 month x 2 people x € 500/day = €20k

 €16M/yr (1.3M/mnd)

 “That’s too much !”

2 wks x 2 people x € 500/day = €10k

80 Evo - Keio-SDM - Oct 2010

time

p
ro

b
ab

il
it

y

Lead time

81 Evo - Keio-SDM - Oct 2010

Estimation Exercise

Are you an optimistic or a realistic estimator?

Let’s find out !

Project:
Multiplying two numbers of 4 figures

How many seconds would you need to complete this Project?

../../../../../../../Program Files/Apache Software Foundation/Apache2.2/htdocs/MxHost/clock.htm

82 Evo - Keio-SDM - Oct 2010

Is this what you did?

83 Evo - Keio-SDM - Oct 2010

Defect rate

• Before test ?

• After test ?

84 Evo - Keio-SDM - Oct 2010

Alternative Design (how to solve the requirement)

85 Evo - Keio-SDM - Oct 2010

Another alternative design

86 Evo - Keio-SDM - Oct 2010

What was the real requirement?

Assumptions, assumptions ...

Better assume that many assumptions are wrong.

Check !

87 Evo - Keio-SDM - Oct 2010

Elements in the exercise

• Estimation, optimistic / realistic

• Interrupts

• Test, test strategy

• Defect-rate

• Design

• Requirements

• Real Requirements

• Assumptions

88 Evo - Keio-SDM - Oct 2010

Human Behavior

89 Evo - Keio-SDM - Oct 2010

Human Behavior

• Systems are conceived, designed, implemented, maintained, used, and
tolerated (or not) by people

• People react quite predictably

• However, often differently from what we intuitively think

• Most project process approaches (PMI, INCOSE, as well as developers)
• ignore human behavior,
• incorrectly assume behavior,
• or decide how people should behave (ha ha)

• To succeed in projects, we must study and adapt to real behavior
rather than assumed behavior

• Even if we don’t agree with that behavior

90 Evo - Keio-SDM - Oct 2010

Is Human Behavior a risk?

• Human behavior is a risk for the success of the system
• When human behavior is incorrectly modeled in the system

• Not because human users are wrong

• Things that can go wrong
• Customers not knowing well to describe what they really need

• Users not understanding how to use or operate the system

• Users using the system in unexpected ways

• Incorrect modeling of human transfer functions within the system:
ignorance of designers of systems engineers

• Actually, the humans aren’t acting unpredictably
• Because it happens again and again

• Human error results from physiological and psychological
limitations of humans

result

people

91 Evo - Keio-SDM - Oct 2010

Human Behavioral Inhibitors

• No Sense of Urgency

• Indifference

• (lack of) Discipline

• Intuition

• Fear of Uncertainty

• Fear of Perceived
Weakness

• Fear of Failure

• Perceived lack of time

• (lack of) Zero Defects
attitude

• Ignorance

• Incompetence

• Politics

92 Evo - Keio-SDM - Oct 2010

People responsible for success

• During the project
• Can still influence the performance of the project

• First responsibility of the Project Manager

• Actually responsibility of the whole development organization

• After the project, once the system is out there
• No influence on the performance of the system any more

• System must perform autonomously

• So the performance must be there by design

• Including appropriate interface with humans

• Responsibility and required skill of Systems Engineering

93 Evo - Keio-SDM - Oct 2010

Discipline

• Control of wrong inclinations

• Even if we know how it should be done …
(if nobody is watching …)

• Discipline is very difficult

• Romans 7:19

• The good that I want to do, I do not ...

 Helping each other (watching over the shoulder)

 Rapid success (do it 3 weeks for me…)

 Making mistakes (provides short window of opportunity)

 Openness (management must learn how to cope)

94 Evo - Keio-SDM - Oct 2010

Intuition

• Makes you react on every situation

• Intuition is fed by experience

• It is free, we always carry it with us

• We cannot even turn it off

• Sometimes intuition shows us the wrong direction

• In many cases the head knows, the heart not

• Coaching is about redirecting intuition

95 Evo - Keio-SDM - Oct 2010

Is intuition wrong, or is the design wrong ?

96 Evo - Keio-SDM - Oct 2010

Communication

• Talking as near as possible along each other

• Don’t assume we understand: check !

To each other Along each other

97 Evo - Keio-SDM - Oct 2010

Communication

• Traffic accident: witnesses tell their truth

• Same words, different concepts

• Human brains contain rather fuzzy concepts

• Try to explain to a colleague

• Writing it down is explaining it to paper

• If it’s written it can be discussed and changed

• Vocal communication evaporates immediately

• E-mail communication evaporates in a few days

98 Evo - Keio-SDM - Oct 2010

Perception

• Quick, acute, and intuitive cognition (www.M-W.com)

• What people say and what they do is not always equal

• The head knows, but the heart decides

• Hidden emotions are often the drivers of behavior

• Customers who said they wanted lots of different ice cream flavors
from which to choose,
still tended to buy those that were fundamentally vanilla

• So, trying to find out what the real value to the customer is, can show
many paradoxes

• Better not simply believe what they say: check!

99 Evo - Keio-SDM - Oct 2010

Responsibility

• Taking responsibility - commitment

• Getting responsibility - empowerment

• Understanding responsibility

• Giving back responsibility

100 Evo - Keio-SDM - Oct 2010

Culture

• It failed because of the existing culture
 (no good excuse !)

• Culture is the result of how people work together

• Culture can’t be changed (“we must change the culture”)

• Culture can change

• By doing things differently

101 Evo - Keio-SDM - Oct 2010

It can’t be done, they don’t allow it

• If the success of your project is being frustrated by
• dogmatic rules

• amateur managers

 it’s no excuse for failure of your project

• If you don’t really get the responsibility (empowerment)

• If you cannot continue to take responsibility

• Return the responsibility

• At the end of your project it’s too late
at the FatalDate any excuse is irrelevant

• You knew much earlier

102 Evo - Keio-SDM - Oct 2010

People oppose change !

• People are not against change

• People (sub-consciously) don’t like uncertainty

• Any project changes something
and thus introduces uncertainty

• People can cope with uncertainty for a short time

103 Evo - Keio-SDM - Oct 2010

Excuses, excuses, excuses …

• We have been thoroughly trained to make excuses

• We always downplay our failures

• At the Fatal Day, any excuse is in vain: we failed

• Even if we “couldn’t do anything about it”

• Failure is a very hard word. That’s why we are using it !

• No pain, no gain

• We never say: “You failed”, better: “We failed”
• After all, we didn’t help the person not to fail

• “Lose face” is not only typical Asian

104 Evo - Keio-SDM - Oct 2010

Ignore the first reaction

• If you show something is wrong

• Even if the person agrees, first you’ll get:

 “Yes, but ... bla bla” or,
 “That’s because ... bla bla”

• We have been trained from childhood to make excuses

• Ignore the bla bla

• Wait for the next reaction

105 Evo - Keio-SDM - Oct 2010

Logical thinking is not always better

• Intuitive decision is often good

• Logical thinking feeds the sub-consciousness

• Sub-consciousness needs some time

Real Options
• Option to make or abandon a decision

• The later you make the decision,
the more information you can have about it

• Options have value until expiration

• On expiration the value has disappeared

• Just in Time delivery

• Start feeding your sub-consciousness in due time,
to decide just in time

106 Evo - Keio-SDM - Oct 2010

Accept Human Psychology

• Why don’t they practice what we preach?
(Humphrey 1999)

• They don’t practice what we preach !

What now?

107 Evo - Keio-SDM - Oct 2010

Ready in January

• Stick to your agreement

• Can you do that?

• Yes

• When is it done?

Be as explicit as needed

108 Evo - Keio-SDM - Oct 2010

Competence square

competent

unaware aware

incompetent

109 Evo - Keio-SDM - Oct 2010

The problem of problem denial

happy

denial confusion

solution

110 Evo - Keio-SDM - Oct 2010

What do we do first ?

• Known and clear issues

• New / unknown / unclear issues

• Known …
• Clear …
• Unknown …
• Unclear …

111 Evo - Keio-SDM - Oct 2010

First Time Right

• Known and clear issues

• New / unknown / unclear issues

• Known …
• Clear …
• Unknown …
• Unclear …

• Known …
• Clear …
• Unknowns known
• Unclears clear

112 Evo - Keio-SDM - Oct 2010

Project
Life Cycles

113 Evo - Keio-SDM - Oct 2010

Waterfall ? Winston Royce 1970

114 Evo - Keio-SDM - Oct 2010

This is what Royce wanted to say

115 Evo - Keio-SDM - Oct 2010

When can we use waterfall ?

• Requirements are completely clear, nothing will change

• We’ve done it may times before

• Everybody knows exactly what to do

• We call this production

• In your projects:
• Is everything completely clear ?

• Will nothing change ?

• Does everybody know exactly what to do ?

• Are you sure ?

• Even most production doesn’t run smoothly the first time

116 Evo - Keio-SDM - Oct 2010

How management likes it

Start
Project

We can
do it We did it

117 Evo - Keio-SDM - Oct 2010

V-Model

Implementation

118 Evo - Keio-SDM - Oct 2010

W-model

119 Evo - Keio-SDM - Oct 2010

All Models are wrong

Some are useful

120 Evo - Keio-SDM - Oct 2010

Evolutionary
Principles

121 Evo - Keio-SDM - Oct 2010

No cure - no pay

• If what we do doesn’t deliver a positive ROI,
there is no money to pay our salary

• So, better do not do things that do not deliver ROI

• Do you dare to work on a no-cure-no-pay basis ?

122 Evo - Keio-SDM - Oct 2010

Value

• Value is what makes the customer more successful and
happy than before

• We’re in the game of
• Optimizing Value
• Eliminating Non-Value
• Not causing problems
• At the lowest cost

123 Evo - Keio-SDM - Oct 2010

Perceived value

• What we perceive as value

• What the users perceive as value

• What the customer perceives as value

• What the stakeholders perceive as value

• May be different from real value

• Better assume that a lot of our assumptions are wrong

• Still, value means different things to different stakeholders

• If we want to be successful, we may have to find the best compromise

124 Evo - Keio-SDM - Oct 2010

The head and the hart

• There is often a paradox between what the mind tells and
what the body does (logic  emotion)

• So, we shouldn’t just do what the customer says,
but rather find out what he really needs

• If we base our perception of the requirements on what the
customer says (Waterfall, Agile), we’re probably developing
a great solution to the wrong problem

and still wants

125 Evo - Keio-SDM - Oct 2010

Murphy’s Law

• Whatever can go wrong, will go wrong

• Should we accept fate ??

Murphy’s Law for Professionals:

 Whatever can go wrong, will go wrong …

Therefore:

 We should actively check all possibilities that can go wrong
and make sure that they cannot happen

126 Evo - Keio-SDM - Oct 2010

Preflection, foresight, prevention

Insanity is doing the same things over and over again
and hoping the outcome to be different (let alone better)

Albert Einstein 1879-1955, Benjamin Franklin 1706-1790, it seems Franklin was first

Only if we change our way of working,
the result may be different

• Hindsight is easy, but reactive

• Foresight is less easy, but proactive

• Reflection is for hindsight and learning

• Preflection is for foresight and prevention

Only with prevention we can save precious time

This is used in the Deming or Plan-Do-Check-Act cycle

127 Evo - Keio-SDM - Oct 2010

The essential ingredient: the PDCA Cycle
 (Shewhart Cycle - Deming Cycle - Plan-Do-Study-Act Cycle - Kaizen)

Plan
· What to achieve
· How to achieve it

Do
Carry out the Plan

Check
· Is the Result

according to Plan?
· Is the way we achieved

the Result according to Plan?

Act
· What are we going

to do differently?
· We are going to

do it differently!

Pl

In
tu

iti
ve

cy
cle

!

128 Evo - Keio-SDM - Oct 2010

It can’t be done - it must be done

• It can’t be done
• Management doesn’t allow it

• “They” won’t do it

• It’s impossible

• It must be done
• How are we going to do it

• We don’t let others
make us fail

Plan
What do we

want to
know

or to do

Do
Carry out plan

Check
Is Result
according
to plan?

Act
What are we
going to do
differently

Moving to the
Act phase

Stuck in the
Check Phase

129 Evo - Keio-SDM - Oct 2010

Project evaluations

project project

st
ar

t

ev
al

u
at

io
n

st
ar

t

ev
al

u
at

io
n

one project duration

task
cycle

project

st
ar

t

en
d

st
ar

t

en
d

ev
al

u
at

io
n

ev
al

u
at

io
n

ev
al

u
at

io
n

task
cycle

task
cycle

Project evaluation

Result evaluations

project project

st
ar

t

ev
al

u
at

io
n

st
ar

t

ev
al

u
at

io
n

one project duration

task
cycle

project

st
ar

t

en
d

st
ar

t

en
d

ev
al

u
at

io
n

ev
al

u
at

io
n

ev
al

u
at

io
n

task
cycle

task
cycle

Project evaluation

Result evaluations

130 Evo - Keio-SDM - Oct 2010

Is waterfall wrong ?

cycle 1 n 5 n-1 2 4 3 - - - - - - - -

131 Evo - Keio-SDM - Oct 2010

Development cycles

planning start

smart planning start planning

planning start

132 Evo - Keio-SDM - Oct 2010

Knowledge
how to achieve the goal

If we

• Use very short Plan-Do-Check-Act cycles

• Constantly selecting the
most important things to do

then we can

• Most quickly learn what the real requirements are

• Learn how to most effectively and efficiently realize these
requirements

and we can

• Spot problems quicker, allowing
more time to do something about them

doing the
right things

doing the
right things

right

Plan
· What to achieve
· How to achieve it

Do
Carry out the Plan

Check
· Is the Result

according to Plan?
· Is the way we achieved

the Result according to Plan?

Act
· What are we going

to do differently?
· We are going to

do it differently!

133 Evo - Keio-SDM - Oct 2010

Known for decades

• Benjamin Franklin (1706-1790)
• Waste nothing, cut off all unnecessary activities,

plan before doing, be proactive, assess results and learn continuously to improve

• Henry Ford (1863-1947)
• My Life and Work (1922)

• We have eliminated a great number of wastes

• Today and Tomorrow (1926)
• Learning from waste, keeping things clean and safe, better treated people produce more

• Toyoda’s (Sakichi, Kiichiro, Eiji) (1867-1930, 1894-1952, 1913-)
• Jidoka: Zero-Defects, stop the production line (1926)
• Just-in-time – flow – pull

• W. Edwards Deming (1900-1993)
• Shewart cycle: Design-Produce-Sell-Study-Redesign (Japan – 1950)
• Becoming totally focused on quality improvement (Japan – 1950)

Management to take personal responsibility for quality of the product
• Out of the Crisis (1986) - Reduce waste

• Joseph M. Juran (1904-2008)
• Quality Control Handbook (1951, Japan – 1954)
• Total Quality Management – TQM
• Pareto Principe

• Philip Crosby (1926-2001)

• Quality is Free (1980)
• Zero-defects (1961)

• Taiichi Ohno (1912-1990)
• (Implemented the) Toyota Production System (Beyond Lange-Scale Production) (1988)
• Absolute elimination of waste - Optimizing the TimeLine from order to cash

• Masaaki Imai (1930-)
• Kaizen: The Key to Japan's Competitive Success (1986)
• Gemba Kaizen: A Commonsense, Low-Cost Approach to Management (1997)

134 Evo - Keio-SDM - Oct 2010

There is nothing new in software too

• Managing the development of large software systems - Walter Royce - 1970

• Famous “Waterfall document”: figure 2 showed a ‘waterfall’
• Text and other figures showed that Waterfall doesn’t work
• Anyone promoting Waterfall doesn’t know or didn’t learn from history

• Incremental development - Harlan Mills - 1971

• Continual Quality feedback by Statistical Process Control (Deming !)
• Continual feedback by customer use
• Accommodation of change - Always a working system

• Cleanroom software engineering - Harlan Mills - 1970’s

• Incremental Development - Short Iterations
• Defect prevention rather than defect removal
• Statistical testing
• 10-times less defects at lower cost
• Quality is cheaper

• Evolutionary Delivery - Evo - Tom Gilb - 1974, 1976, 1988, 2005

• Incremental + Iterative + Learning and consequent adaptation
• Fast and Frequent Plan-Do-Check-Act
• Quantifying Requirements - Real Requirements
• Defect prevention rather than defect removal

135 Evo - Keio-SDM - Oct 2010

If we know, why do projects still fail ?

Cobb's Paradox:

"We know why projects fail,
we know how to prevent their failure
-- so why do they still fail?"

Martin Cobb
Treasury Board of Canada Secretariat
Ottawa, Canada

1989

136 Evo - Keio-SDM - Oct 2010

• Evo (short for Evolutionary...) uses PDCA consistently

• Applying the PDCA-cycle
actively, deliberately, rapidly and frequently,
for Product, Project and Process, based on ROI and highest value

• Combining Planning, Requirements- and Risk-Management into
Result Management

• We know we are not perfect, but the customer shouldn’t be
affected

• Evo is about delivering Real Stuff to Real Stakeholders
doing Real Things “Nothing beats the Real Thing”

• Projects seriously applying Evo, routinely conclude
successfully on time, or earlier

Evo

Plan
· What to achieve
· How to achieve it

Do
Carry out the Plan

Check
· Is the Result

according to Plan?
· Is the way we achieved

the Result according to Plan?

Act
· What are we going

to do differently?
· We are going to

do it differently!

137 Evo - Keio-SDM - Oct 2010

 release 3release 1 release 2 release 4

syst
concept

syst
req +
arch

system
req

and arch

system
requirements

and
architecture

system
requirements

and
architecture

syst
integr
+ test

sy
st

em
im

pl
em

en
ta

tio
n

sy
st

em
im

pl
em

en
ta

tio
n

sy
st

em
im

pl
em

en
ta

tio
n

sy
st

em
im

pl
em

system
integration

and test

system
integration

and test

system
integration

and test

sy
st

insta
l

+ ac
ce

pt

sy
ste

m

insta
lla

tio
n

an
d ac

ce
ptan

ce

sy
ste

m

insta
lla

tio
n

an
d ac

ce
ptan

ce

sy
ste

m

insta
lla

tio
n

an
d ac

ce
ptan

ce

system

operations and

maintenance

system

operations and

maintenance

system

operations and

maintenance

system

operations and

maintenance

NASA
Incremental

Development
Model

138 Evo - Keio-SDM - Oct 2010

Spiral
Process
model
(Boehm 88)

139 Evo - Keio-SDM - Oct 2010

Waterfall,
Big-Bang

Incremental

Evolutionary

140 Evo - Keio-SDM - Oct 2010

Evo Project Planning

Evolutionary Project
Management (Evo)

• Plan-Do-Check-Act
• The powerful ingredient for success

• Business Case
• Why we are going to improve what

• Requirements Engineering
• What we are going to improve and what not
• How much we will improve: quantification

• Architecture and Design
• Selecting the optimum compromise for the conflicting requirements

• Early Review & Inspection
• Measuring quality while doing, learning to prevent doing the wrong things

• Weekly TaskCycle
• Short term planning
• Optimizing estimation
• Promising what we can achieve
• Living up to our promises

• Bi-weekly DeliveryCycle
• Optimizing the requirements and checking the assumptions
• Soliciting feedback by delivering Real Results to eagerly waiting Stakeholders

• TimeLine
• Getting and keeping control of Time: Predicting the future
• Feeding program/portfolio/resource management

Zero
Defects
Attitude

141 Evo - Keio-SDM - Oct 2010

Evolutionary
Planning

TaskCycle
DeliveryCycle

142 Evo - Keio-SDM - Oct 2010

To-do lists

• Are you using to-do lists?  EXERCISE

• Did you add effort estimates?

• Does what you have to do fit in the available time ?

• Did you check what you can do and what you cannot do?

• Did you take the consequence?

• Evo:
• Because we are short of time, we better use the limited available

time as best as possible

• We don’t try to do better than possible

• To make sure we do the best possible, we choose what to do in the
limited available time. We don’t just let it happen randomly

143 Evo - Keio-SDM - Oct 2010

Evo Planning: Weekly TaskCycle

• Are we doing the right things,
in the right order,
to the right level of detail for now

• Optimizing estimation, planning and tracking
abilities to better predict the future

• Select highest priority tasks, never do any
lower priority tasks, never do undefined tasks

• There are only about 26 plannable hours in a week (2/3)

• In the remaining time: do whatever else you have to do

• Tasks are always done, 100% done

delivery

task

strategy

roadmap

project

organization

144 Evo - Keio-SDM - Oct 2010

Effort and Lead Time

• Days estimation  lead time (calendar time)

• Hours estimation  effort

• Effort variations and lead time variations have different
causes

• Treat them differently and keep them separate
• Effort: complexity

• Lead Time: time-management
• (effort / lead-time ratio)

145 Evo - Keio-SDM - Oct 2010

Every week we plan

• How much time do we have available

• 2/3 of available time is net plannable time

• What is most important to do

• Estimate effort needed to do these things

• Which most important things fit in the
net available time (default 26 hr per week)

• What can, and are we going to do

• What are we not going to do

 2/3 is default start value

this value works well in development projects

Task a 2
Task b 5
Task c 3
Task d 6
Task e 1
Task f 4
Task g 5

Task h 4
Task j 3
Task k 1

26

do

do
not

146 Evo - Keio-SDM - Oct 2010

Making best use of limited available time

• If the work is done, the time is already spent

• If we still have to do the work, we can decide
• What is really important

• What is less important

• What we must do

• What we can do

• What we are going to do

• What we are not going to do

• Therefore we plan first, in stead of finding out later

• We cannot work in history

147 Evo - Keio-SDM - Oct 2010

Estimation

• Changing from Optimistic to Realistic

• Only works if we are Serious about Time

Sense of Urgency

148 Evo - Keio-SDM - Oct 2010

At the end of the week

• Was all planned work really done?

 If a Task was not completed, we have to learn:
• Time spent but the work not done?  effort estimation problem

Discuss what the causes may be and decide how to change your estimation habits

• Time not spent?  time management problem
• Too much distraction
• Too much time spent on other (poorly-estimated) Tasks
• Too much time spent on unplanned Tasks

 Discuss what the causes may be and decide how to improve (Check and Act)

• Conclude unfinished Tasks after having dealt
with the consequences  immediate metrics consumption !
• Feed the disappointment of the “failure” into your intuition mechanism
• Define new Tasks, with estimates, and put on the Candidate Task List
• Declare the Task finished after having taken the consequences

• Continue with planning the Tasks for the next week

149 Evo - Keio-SDM - Oct 2010

Meetings

• Do you have weekly project meetings ?

• Pitfalls
• Not reaching set goals

• One to ones, others waiting
• Example: status round (“round of excuses”)

• Example: detailed discussion

• Discussing less important subjects for too long

• Meetings are very costly (ROI?)

• Try the meeting-meter
number of people  average hourly rate: show $$ ticking

150 Evo - Keio-SDM - Oct 2010

Weekly 3-Step Procedure

• Individual preparation
• Conclude current tasks
• What to do next
• Estimations
• How much time available

• Modulation with / coaching by Project Management
• Status
• Priority check
• Feasibility
• Commitment and decision

• Synchronization with group (team meeting)
• Formal confirmation
• Concurrency
• Learning
• Helping
• Socializing

151 Evo - Keio-SDM - Oct 2010

152 Evo - Keio-SDM - Oct 2010

TaskSheet (this is the think part of First Think - Then Do)

• Task description

• Requirements for this task to be used as reference for verification:
• Functions (what should be the result of this task?)

• Qualities (how well should the results be)

• Constraints (e.g. what not to do)

• What activities must be done to realize the requirements stated?

• Implementation details (how am I going to implement it)

• Verification approach - test design

• Planning

• Is everything really clear?

• Have this document (and related docs, if any) reviewed

• Clarify any unclears until everything is clear and agreed with the
reviewer

• Do the work

153 Evo - Keio-SDM - Oct 2010

TaskSheet: More time needed?

• Some people think they need more time for the Task if
they “must fill in” the TaskSheet

• If you feel you “must fill in”: Don’t do it !

• If you think you need more time: add more time

• You will need this information during the Task anyway, so
you should want it and

• It should save time

154 Evo - Keio-SDM - Oct 2010

Analysis Tasks

• I don’t know…
• That’s an Analysis Task!

• How much time are you going to give yourself?

• To find out something we do not know
• Use short TimeBox

• Documented at the end of the TimeBox:
• What do we know now

• What do we not yet know

• What should we know more

• Which New Tasks can we define?

• Estimation and priority of these tasks defined

• Typically Architecture and Design issues!

155 Evo - Keio-SDM - Oct 2010

156 Evo - Keio-SDM - Oct 2010

Management
Questions
on Tasks

• Is the Project under Control ?

• Show me !
• No “holes” in OK’s

• All available plannable time planned

• TaskSheets used

• Results used

• Prompt explanation in case of discrepancies

157 Evo - Keio-SDM - Oct 2010

DeliveryCycle

• Are we delivering the right things,
in the right order
to the right level of detail for now

• Optimizing requirements
and checking assumptions

1. What will generate the optimum feedback

2. We deliver only to eagerly waiting stakeholders

3. Delivering the juiciest, most important
stakeholder values that can be made in the least time

• What will make Stakeholders more productive now

• Not more than 2 weeks

delivery

task

strategy

roadmap

project

organization

158 Evo - Keio-SDM - Oct 2010

Tasks feed Deliveries

deliverytasks

taskstasks

tasks tasks tasks

delivery

deliverytasks

tasks

tasks

tasks

this week

delivery

task

strategy

roadmap

project

organization

159 Evo - Keio-SDM - Oct 2010

Task Cycle  Delivery Cycle

 Doing Delivering

the right things, in the right order to the right level of detail

Optimizing

 Estimation, Requirements,
 planning, tracking assumptions

Selecting

 Highest priority tasks Most important values

 ≤ 1 week ≤ 2 weeks

Always done, 100% done

160 Evo - Keio-SDM - Oct 2010

Zero
Defects
Attitude

Designing
a Delivery

Serge (ProjLead)
MbWA 3
Planning nxt wk 3
Work for deliv 4
- 6
- 2
- 1
- 5
Total 24

Gregory
Draft design 6
Finish design 6
Work for deliv 3
- 1
- 2
- 2
- 3
- 5
- 6
XMLa 4
XMLb 4
Total 42

Jerome
XMLa 3
XMLb 3

...

available time:
36 hr gross

24 hr plannable deliv to
main
team

Delivery to
Stakeholders

TaskCycle

Gregory (later)
Draft design 0
Finish design 0

...

Repair deliv 0
...

Fri Thu Wed Mon Tue Fri Thu Wed Mon Tue Fri

Delivery to
Stakeholders

161 Evo - Keio-SDM - Oct 2010

TaskCycle Exercise

• How much time do you have available

• 2/3 of available time is net plannable time

• What is most important to do (make list)

• Estimate effort needed to do these things

• Which most important things fit in the net available time
(default 26 hr)

• What can you do, and what are you going to do

• What are you not going to do

• Why ?

Task a 2
Task b 5
Task c 3
Task d 6
Task e 1
Task f 4
Task g 5

Task h 4
Task j 3
Task k 1

26

do

do
not

162 Evo - Keio-SDM - Oct 2010

Agile, but will we be on time ?

• Organizing the work in very short cycles

• Making sure we are doing the right things

• Doing the right things right

• Continuously optimizing (what not to do)

• So, we already work more efficiently

but ...

• How do we make sure the whole project is done on time ?

163 Evo - Keio-SDM - Oct 2010

Evolutionary
Planning

TimeLine

164 Evo - Keio-SDM - Oct 2010

TimeLine

now “all” done

all we think we have to do with the resources we have contingency

date needed (FatalDate)

now date needed (FatalDate)

most important things bells & whistles

will be done might be done not done

What the customer wants, he cannot afford

Standard Projects

Evo

now “all” done

all we think we have to do with the resources we have contingency

165 Evo - Keio-SDM - Oct 2010

Two options

1. Conventional option
At the fatal day we’ll tell we didn’t succeed

2. Evo option
We already know we won’t succeed, so we can tell it now,

then together we can decide what to do

 Which option do you want?

 Quality On Time is also being honest as soon as you can

 The challenge is to find out as soon as you can

166 Evo - Keio-SDM - Oct 2010

Dependencies

result time

resources

167 Evo - Keio-SDM - Oct 2010

Priorities

Better 80% 100% done, than 100% 80% done

Let it be the most important 80%

168 Evo - Keio-SDM - Oct 2010

If it easily fits ...

now FatalDate

needed time << available time : OK for now

169 Evo - Keio-SDM - Oct 2010

Setting a Horizon

now FatalDateHorizon
a

b

c

170 Evo - Keio-SDM - Oct 2010

Result to Tasks and back

now FatalDateHorizon

now

delivery1 delivery2 delivery4 delivery5delivery3

Horizon

now

delivery1
TaskCycle TaskCycle

calibrate

calibrate calibrate

171 Evo - Keio-SDM - Oct 2010

Calibration Activity
Act1
Act2
Act3
Act4
Act5
Act6
Act7
Act8
Act9
Act10
Act11
Act12
Act13
Act14
Act15
Act16
Act17
Act18
Act19
Act20
Act21

Act…

now

then

then2

Value Still To Earn


then

now

AeCalibration Factor 

ratio ΣAr/ ΣAe
in the past

predicted
Value Still To Earn
in the future

Activity Estimate Real
Act1 Ae1 Ar1
Act2 Ae2 Ar2
Act3 Ae3 Ar3
Act4 Ae4 Ar4
Act5 Ae5 Ar5
Act6 Ae6 Ar6
Act7 Ae7 Ar7
Act8 Ae8 Ar8
Act9 Ae9 Ar9
Act10 Ae10 Ar10
Act11 Ae11
Act12 Ae12
Act13 Ae13
Act14 Ae14
Act15 Ae15
Act16 Ae16
Act17 Ae17
Act18 Ae18
Act19 Ae19
Act20 Ae20
Act21 Ae21

Act… Ae…

Activity Estimate
Act1 Ae1
Act2 Ae2
Act3 Ae3
Act4 Ae4
Act5 Ae5
Act6 Ae6
Act7 Ae7
Act8 Ae8
Act9 Ae9
Act10 Ae10
Act11 Ae11
Act12 Ae12
Act13 Ae13
Act14 Ae14
Act15 Ae15
Act16 Ae16
Act17 Ae17
Act18 Ae18
Act19 Ae19
Act20 Ae20
Act21 Ae21

Act… Ae…

Calibration Factor












nnow

now

nnow

now

Ae

Ar

1

1

172 Evo - Keio-SDM - Oct 2010

Predicting what will be done when

Calibr
factor

1.0

1.0

1.0

1.4

1.4

1.4

1.4

1.4

1.4

Calibr
still to

1

2

1

4.2

1.4

4.2

5.6

7.0

9.8

Ratio
real/es

1.0

1.2

3.0

2.5

1.0

Spent Still to
spend

2 0

5 1

3 0

3 2

4 1

Estim

2

5

1

2

5

3

1

3

4

5

7

Line Activity

1 Activity 1

2 Activity 2

3 Activity 3

4 Activity 4

5 Activity 5

6 Activity 6

7 Activity 7

8 Activity 8

 

16 Activity 16

17 Activity 17

18 Activity 18

Date
done

30 Mar 2009

1 Apr 2009

2 Apr 2009

9 Apr 2009

10 Apr 2009

16 Apr 2009

2 Jun 2009

11 Jun 2009

25 Jun 2009

173 Evo - Keio-SDM - Oct 2010

Product/Portfolio/Resource Management

• Current Program/Portfolio/Resource Management is based
on hope

• More a game than management

• With TimeLine we can provide PPR Management with
sufficiently reliable data

• To start managing

174 Evo - Keio-SDM - Oct 2010

175 Evo - Keio-SDM - Oct 2010

What do we do if we see we won’t make it on time ?

• If it doesn’t fit ... count backwards

needed time > available time : not OK

needed time = available time : not OK

needed time << available time : OK for now

now FatalDate

Value Still to Earn Earned Value

176 Evo - Keio-SDM - Oct 2010

FatalDay

• FatalDay is the last moment it shall be there

• After the FatalDay, we’ll have real trouble
if the Result isn’t there

• Real Option Theory says that we should do things as late as
possible, but not later
• As late as possible, having the most up-to-date information

to decide what to do
• Not later: the option has expired; it has no value any more

• Count backwards from the FatalDay to know when we
should have started

• If that’s before now, what are we going to do
about it, because failure is not an option

177 Evo - Keio-SDM - Oct 2010

Deceptive options

• Hoping for the best (fatalistic)

• Going for it (macho)

• Working Overtime (fooling ourselves)

• Moving the deadline
• Parkinson’s Law

• Work expands to fill the time for its completion

• Student Syndrome
• Starting as late as possible,

only when the pressure of the FatalDate is really felt

178 Evo - Keio-SDM - Oct 2010

Adding people

makes it later

(Brooks’ Law, 1975)

to a late project ...

179 Evo - Keio-SDM - Oct 2010

The Myth of the
Man-Month

1 2 3 4 5 6 8 7 9 10 11 12 13 14 15 16

1

2

3

4

5

6

8

7

9

10

11

12

13

14

intuition
people x time = constant

Man-Month Myth

reality
(Putnam)

project
duration

number of people

lower cost

shorter time

nine
mothers

area

Economic
optimum?

Brooks’ Law (1975)

Adding people
to a late project

makes it later

180 Evo - Keio-SDM - Oct 2010

 Saving time

We don’t have enough time, but we can save time
without negatively affecting the Result !

• Efficiency in what (why, for whom) we do - doing the right things

• Not doing what later proves to be superfluous

• Efficiency in how we do it - doing things differently

• The product
• Using proper and most efficient solution,

instead of the solution we always used

• The project
• Doing the same in less time,

instead of immediately doing it the way we always did

• Continuous improvement and prevention processes
• Constantly learning doing things better

and overcoming bad tendencies

• Efficiency in when we do it - right time, in the right order

• TimeBoxing - much more efficient than FeatureBoxing

181 Evo - Keio-SDM - Oct 2010

TimeLine

• The TimeLine technique doesn’t solve our problems

• It helps to expose the real status early and continuously

• Instead of accepting the undesired outcome,
we do something about it

• The earlier we know, the more we can do about it

• We start saving time from the very beginning

• We can save a lot of time in any project,
while producing a better outcome

If, and only if, we are serious about time !

182 Evo - Keio-SDM - Oct 2010

Estimation

183 Evo - Keio-SDM - Oct 2010

Estimation techniques used

• Just-enough estimation (don’t do unnecessary things)
• Maximizing Return-on-Investment and Value Delivered

• Changing from optimistic to realistic predictions
• Estimation of Tasks in the TaskCycle
• Prediction what will be done when in TimeLine

• 0th order estimations (ball-park figures)
• For decision-making in Business Case and Design

• Simple Delphi
• For estimating longer periods of time in TimeLine
• For duration of several (15 or more) elements of work

• Simpler Delphi
• Same, but for quicker insight
• Recently added by practice

• Calibration
• Coarse metrics provide accurate predictions

• Doing something about it (if we don’t like what we see)
• Taking the consequence
• Saving time

184 Evo - Keio-SDM - Oct 2010

The Pareto principle
(20 - 80 rule)

A collection of problems always can be divided into a
small number of large problems and a large number of
smaller problems

• The vital few are dealt with individually

• The useful many are dealt with as a group

Juran, 1960

Example: better have 80% of the Requirements 100% done than 100% 80% done

It may even take only 20% of the resources

0%

10%

20%

30%

40%

50%

60%

A B C D E F

185 Evo - Keio-SDM - Oct 2010

Realistic estimation in 3 weeks

• In 3 weeks people can change estimation from
optimistic to realistic

• 1st week 40%, 2nd 80%, 3rd week 100%

• Commitment

• Use ‘the mirror’
• Commitment: they see themselves in the mirror

• No commitment: they see you

186 Evo - Keio-SDM - Oct 2010

Variation often is non-symmetric

time

p
ro

b
ab

il
it

y

187 Evo - Keio-SDM - Oct 2010

Simple Delphi estimation

1. Make a list of things we think we have to do in just enough detail

2. Distribute the list among people who will do the work, or who should be
knowledgeable about the work

3. Ask them to add what we apparently forgot, and to estimate how much
time the elements of work would cost, “as far as you can judge”

4. In a meeting the estimates are compared

5. If estimates differ significantly between estimators, do not take the
average, but discuss about the contents of the work, not about the
estimate (some may forget to include things that have to be done, some others may think that

more has to be done than necessary)

6. After discussion, people estimate individually again and the estimates are
compared again

7. Repeat until sufficient consensus (usually not more than once or twice)

8. Add up all the estimates to end up with an estimate for the whole project

188 Evo - Keio-SDM - Oct 2010

Simple and Simpler Delphi

1. List things to do

2. Distribute the list

3. Add and estimate

4. List estimates

5. Discuss if differences

6. Estimate again

7. Repeat until consensus

8. Add up all the estimates

1. List things to do

2. Distribute the list

3. Add and estimate

4. List estimates: min and max

5. Discuss if differences

6. Agree on value between
min and max

7. Add up all the estimates

Even with coarse estimates per element of work,

the sum averages out the variations and can be quite predictive

189 Evo - Keio-SDM - Oct 2010

0th- order approximations

• In the Business Case we often use 0th- order estimations

• Order of magnitude

• Better than 0 < guess <  (any number is better than no number)

• 0th order is better than no clue

• 1st order is often less accurate than 0th order

• Using two different ways of estimation for crosscheck

• Errors will average if we estimate several pieces

190 Evo - Keio-SDM - Oct 2010

Optimizing Estimation

• Immediately consuming the metrics for learning

• Change from optimistic to realistic estimation in 3 weeks

• Only if we are Serious about Time (Sense of Urgency)

• Using the metrics for calibration of predictions

• Estimation method: Intuition + optimizing intuition

• The person doing the task estimates

• Others should never challenge the estimation

• Estimates are non-negotiable !

• We can and should negotiate about the contents

191 Evo - Keio-SDM - Oct 2010

Evo Planning: Weekly TaskCycle

• Goal is not to be a good estimator

• Goal is to learn to promise what you can and will do
and then to live up to your promises

• It’s easier to estimate in hours than in pieces of cake

• We estimate net effort to do the work

• All work to be 100% done at the end of the week

• We plan 2/3 of the available time

• The other 1/3 is for all other things we’ll do anyway

• We only work on planned things

192 Evo - Keio-SDM - Oct 2010

TimeLine examples

193 Evo - Keio-SDM - Oct 2010

TimeLine example

1-Jan-07 31-Dec-08

1-Apr-07 1-Jul-07 1-Oct-07 1-Jan-08 1-Apr-08 1-Jul-08 1-Oct-08

14-May-07 1-Feb-08

1-Aug-07 - 1-Nov-07
SW3

5-Mar-07 1-Aug-07 1-Nov-07 1-Apr-08

1-Jan-07 - 5-Mar-07

Phase 1
Definition

5-Mar-07 - 1-Aug-07

Phase 2
Validating Architecture

1-Aug-07 - 1-Apr-08

Phase 3
Realization Initial System

5-Mar-07 - 17-Mar-07

SW1.1

17-Mar-07
Very simplest

system

14-May-07 - 1-Aug-07
SW2

5-Mar-07 - 14-May-07
SW1

1-Nov-07 - 1-Feb-08
SW4

1-Feb-08 - 31-Dec-08
SW5

1-Apr-08 - 31-Dec-08

Phase 4
Realization Final System

1-Aug-07
Basic overall

system

1-Nov-07
Rich

overall system

1-Apr-08
Exhibition

ready

10wk 11wk 13wk 11wk 8wk

1-Feb-08
Exhibition feature

cut-off

Full overall
system

14-May-07
Basic

system

31-Dec-08
Complete

194 Evo - Keio-SDM - Oct 2010

TimeLine planning

195 Evo - Keio-SDM - Oct 2010

5 day project model

dayplan daycheck work according to plan

Mon Tue Wed Thu Fri

p
la

n
n

in
g

re
q

u
ir

e
m

e
n

ts

g
lo

b
al

 d
e

si
g

n

d
e

ta
il

 e
x

e
cu

ti
o

n

re
vi

e
w

 a
n

d
 e

d
it

p
re

se
n

ta
ti

o
n

d
e

li
ve

ry

d
o

cu
m

e
n

ta
ti

o
n

ar
ch

iv
in

g

co
n

ti
n

u
it

y

196 Evo - Keio-SDM - Oct 2010

Available TimeBoxes

activity ~%

Planning

Requirements

Global design

Detail execution

Review and edit

Presentation

Delivery

Documentation

Archiving

Continuity

total

5

5

20

20

20

5

10

5

5

5

100

hrs

2

2

8

8

8

2

4

2

2

2

40

dayplan daycheck work according to plan

Mon Tue Wed Thu Fri

p
la

n
n

in
g

re
q

u
ir

e
m

e
n

ts

g
lo

b
al

 d
e

si
g

n

d
e

ta
il

 e
x

e
cu

ti
o

n

re
vi

e
w

 a
n

d
 e

d
it

p
re

se
n

ta
ti

o
n

d
e

li
ve

ry

d
o

cu
m

e
n

ta
ti

o
n

ar
ch

iv
in

g

co
n

ti
n

u
it

y

197 Evo - Keio-SDM - Oct 2010

Help !
We have a QA problem !

• Large stockpile of modules to test
(hardware, firmware, software)

• You shall do Full Regression Tests

• Full Regression Tests take about 15 days each

• Too few testers (“Should we hire more testers ?”)

• Senior Tester paralyzed

• Can we do something about this?

../../Conquest2009/Gilb2009/Presentation/20060222.xls

198 Evo - Keio-SDM - Oct 2010

Do you think you can help us ?

Plan
· What to achieve
· How to achieve it

Do
Carry out the Plan

Check
· Is the Result

according to Plan?
· Is the way we achieved

the Result according to Plan?

Act
· What are we going

to do differently?
· We are going to

do it differently!!

199 Evo - Keio-SDM - Oct 2010

In stead of complaining about a problem …
(Stuck in the Check-phase)

Let’s do something about it !
(Moving to the Act-phase)

200 Evo - Keio-SDM - Oct 2010

Objectifying and quantifying the problem
is a first step to the solution

Estim

17

8

14

11

9

17

4

26

totals 106

Line Activity

1 Package 1

2 Package 2

3 Package 3

4 Package 4 (wait for feedback)

5 Package 5

6 Package 6

7 Package 7

8 Package 8

Customer Will be done
(now=22Feb)

HT

Chrt

BMC

McC?

Ast

?

Cli

Sev

?

Chrt 24 Feb

Chrt

Yet 28 Feb

Yet 24 Mar

Cli After 8.5 OK

Ast

Alter
native

Junior
tester

Devel
opers

2 17 4

5 10

7 5 4

3 5

3 10 10

1 3

1

1

1

1

1.1

3

0.1

18

47 32 36

Line Activity

1 Package 1

2 Package 2

3 Package 3

4 Package 4 (wait for feedback)

5 Package 5

6 Package 6

7 Package 7

8 Package 8.1

9 Package 8.2

10 Package 8.3

11 Package 8.4

12 Package 8.5

13 Package 8.6

14 Package 8.7

15 Package 8.8

totals

Estim

17

8

14

11

9

17

4

1

1

1

1

1.1

3

0.1

18

106

201 Evo - Keio-SDM - Oct 2010

TimeLine

Selecting the priority order of customers to be served
• “We’ll have a solution at that date … Will you be ready for it ?”

An other customer could be more eagerly waiting

• Most promising customers

wk
9 10 11 12 13 14 15 16 17 13

delivery
cust a

delivery
cust b,c

delivery
cust a,d

start

(all done)

202 Evo - Keio-SDM - Oct 2010

Result

• Tester empowered

• Done in 9 weeks

• So called “Full Regression Testing” was redesigned

• Customers systematically happy and amazed

• Kept up with development ever since

• Increased revenue

Recently:

• Tester promoted to product manager

• Still coaching successors how to plan

203 Evo - Keio-SDM - Oct 2010

The problems in projects are not the real problem,
the real problem is that we don’t do something about it

204 Evo - Keio-SDM - Oct 2010

Whiteboard TimeLine Planning

205 Evo - Keio-SDM - Oct 2010

Whiteboard TimeLine Planning

206 Evo - Keio-SDM - Oct 2010

Whiteboard TimeLine Resource Planning

207 Evo - Keio-SDM - Oct 2010

Making individual TimeLines

now

delivery1 delivery2 delivery4 delivery5delivery3

John

Carl

Sue

208 Evo - Keio-SDM - Oct 2010

209 Evo - Keio-SDM - Oct 2010

PERT (Project Evaluation Review Technique)

Designing a Delivery

Task a Task b Task c Task eTask d

Task f Task g

Task h

John 3/5h John 5/8h John 4/6h Sue 6/9h John 4/6h

Sue 7/11hCarl 6/9h

Sue 3/5h

9 + 11 + 9 + 6 = 35

210 Evo - Keio-SDM - Oct 2010

Some details

211 Evo - Keio-SDM - Oct 2010

Tasks - Deliveries - Projects

Tasks - Deliveries - Projects

actually are similar, except for

the time and complexity scales

• At the end there is a defined Result, 100% done

• The journey to the Result should be designed

delivery

task

strategy

roadmap

project

organization

now then

212 Evo - Keio-SDM - Oct 2010

What if …

• Somebody gets sick
• Swap deliveries

• Requirement change (functional, performance, constraint)
• Never say “Is impossible, we have no time”, rather:

• Of course it is possible, tell me what to leave out

• Where shall we fit it in the TimeLine?

TimeLine provides control over the Project

now end horizon

deliveries

task cycles

213 Evo - Keio-SDM - Oct 2010

If we add something …

If we add something, something else will not be done

now FatalDate

214 Evo - Keio-SDM - Oct 2010

Making best use of limited available time

• If the work is done, the time is already spent

• If we still have to do the work, we can decide
• What is really important

• What is less important

• What we must do

• What we can do

• What we are going to do

• What we are not going to do

• Therefore we plan first, in stead of finding out later

• We cannot work in history

215 Evo - Keio-SDM - Oct 2010

TimeBox - taking Time seriously

• A TimeBox is the maximum time available for a Task

• When the time is up, the Task should be completely done:
there is no more time !

• Because people tend to do more than necessary
(especially if the requirements of the Task are unclear)

• Check halfway whether you’re going to succeed on time

• If not: what can you do less, without doing too little

• Define the requirements of the Task well

• If the TimeBox is unrealistic: take the consequences (pdcAct) immediately
(if a Task suddenly proves to need much more time, is it still worth the investment?)

• If you really cannot succeed within the TimeBox:
• Check what you did

• Check what you didn’t do

• Check what still has to be done

• Define new Tasks with estimations (TimeBoxes !)

• Stop this Task to allow for finishing the other committed Tasks
(don’t let other Tasks randomly be left undone)

216 Evo - Keio-SDM - Oct 2010

Parkinson's Law

“Work expands to fill the time available”

6 days

3 days

5 days

Standard Management
• Do 6 days in 5 days!

• Never succeed
• Frustration
• De-motivation
• Stress
• Higher productivity??

Evo
• Do 3 days in 5 days!

• Success
• Unstress
• Energy
• Motivation = Motor of

productivity
• Higher productivity!!

217 Evo - Keio-SDM - Oct 2010

Active Synchronization

Somewhere around you, there is the bad world.

If you are waiting for a result outside your control,
there are three possible cases:

1. You are sure they’ll deliver Quality On Time

2. You are not sure

3. You are sure they’ll not deliver Quality On Time

• If you are not sure (case 2), better assume case 3

• From other Evo projects you should expect case 1

• Evo suppliers behave like case 1

In cases 2 and 3: Actively Synchronize: Go there !
1. Showing up increases your priority

2. You can resolve issues which otherwise would delay delivery

3. If they are really late, you’ll know much earlier

218 Evo - Keio-SDM - Oct 2010

Interrupts

• Boss comes in: “Can you paint my fence?”

• What do you do?

• In case of interrupt, use interrupt procedure

219 Evo - Keio-SDM - Oct 2010

Interrupt Procedure ”We shall work only on planned Tasks”

In case a new task suddenly appears in the middle of a Task Cycle
(we call this an Interrupt) we follow this procedure:

1. Define the expected Results of the new Task properly

2. Estimate the time needed to perform the new Task, to the level of
detail really needed

3. Go to your task planning tool (many projects use the ETA tool)

4. Decide which of the planned Tasks is/are going to be sacrificed
(up to the number of hours needed for the new Task)

5. Weigh the priorities of the new Task against the Task(s) to be
sacrificed

6. Decide which is more important

7. If the new Task is more important: replan accordingly

8. I the new Task is not more important, then do not replan and
do not work on the new Task. Of course the new Task may be added to
the Candidate Task List

9. Now we are still working on planned Tasks.

220 Evo - Keio-SDM - Oct 2010

Task selection criteria

• Most important requirements first

• Highest risks first

• Most educational or supporting for development first

• Actively Synchronize with other developments

• Every cycle delivers a useful, completed, result

221 Evo - Keio-SDM - Oct 2010

Delivery selection criteria

1. What will generate the optimum feedback

2. We deliver only to eagerly waiting stakeholders

3. Delivering the juiciest, most important
stakeholder values that can be made in the least time

• What will make Stakeholders more productive now

• Every delivery must have a useful set of stakeholder values (features,
qualities), otherwise the stakeholders get stuck

– Delete  Add

– Copy  Paste

• Every new delivery must have clear extras,
otherwise the stakeholders won’t keep producing feedback

• Every delivery delivers smallest clear increment,
to get the most rapid and most frequent feedback

• If a delivery takes more than two weeks, it can usually be shortened:
try harder

222 Evo - Keio-SDM - Oct 2010

Types of Tasks

1. Tasks done within estimated time (= timebox)

2. Analysis Tasks (too short timebox)

• What do you know now

• What do you still not know

• What do you still have to know

• Which tasks can you define

3. Mis-estimated tasks (we’re only human)

• Feed the disappointment about the failure to your
experience/intuition mechanism

• What did you do

• What did you not do

• What do you still have to do

• Which tasks can you define

223 Evo - Keio-SDM - Oct 2010

Smallest step with highest value

• Evo tries the smallest possible step
• If the result proves to be incorrect,

we have to redo as little as possible

• The earlier we are done, the more time we have in our future

• Just enough to see we’re on the right track

• Because our (and their !) assumptions may be wrong

224 Evo - Keio-SDM - Oct 2010

What is the
shortest way
through the maze ?

How quickly
do we know
an alley
is the main road
or a dead-end?

Requirements

Result

?

225 Evo - Keio-SDM - Oct 2010

Accepting a Task

• Accepting a Task means:
• Taking full responsibility for the successful conclusion of the Task

within the time agreed

• This also means:
• Once you know that you will not be able to conclude the task

successfully, then notify Project Management immediately to
decide what to do with this information

• When the agreed time has come, no excuse (except act of God) is
good enough for not having successfully concluded the Task:
you simply failed your responsibility

226 Evo - Keio-SDM - Oct 2010

What to plan and what not to plan

• We plan tasks that don’t get done unless planned

• We do not plan tasks that don’t have to be planned to get
done. Such planning costs more than it saves

• Account for these tasks as “unplannable tasks”

• Default we allocate 2/3 for plannable tasks and 1/3 for
unplannable tasks

• We may include tasks in the planning to show that the
hours for these tasks are not available for other work

• Plan all plannable hours

227 Evo - Keio-SDM - Oct 2010

Beware of longer Tasks

• Beware of Tasks longer than about 6 hrs

• Estimation is never exact

• If you have 4 or more Tasks in a week, the variation in the
Tasks estimations should average

• You have only 2/3 plannable time, so you can cheat a bit to
get all the committed tasks done

• May seem contradictory to the TimeBox principle ...

.
. . . Only the average should be OK:

Result is all that counts

228 Evo - Keio-SDM - Oct 2010

We work on more projects

• Define how many hours available for this project

• Deliver these hours

• Vision:

fixed
teams

no
teams

semi
fixed
teams

229 Evo - Keio-SDM - Oct 2010

Why TaskCycle?

• Reflection and Preflection (PDCA - Quick feedback)

• Not working on anything less important

• Learning to know what to promise

• And then living up to our promises

• Taking responsibility

• Getting the info to be able to carry the responsibility

• Coping with interrupts

• Active Synchronization

• Calibration of estimations on the TimeLine

• Taming Parkinson’s Law and Student Syndrome

230 Evo - Keio-SDM - Oct 2010

What to do with the time gained?

If our original requirements are done in 70% of the time,
what do we do with the 30% gained?

1. Choosing the next project

2. Continuing evolutionarily adding extras

3. Beware of Parkinson’s Law!

4. Extending the horizon of the project
to assure success

231 Evo - Keio-SDM - Oct 2010

Extending the project horizon to success

• Many projects end at: Hurray, it works!

• If customer success is paying our salaries, shouldn’t we
make sure success is going to happen

• Now a lot of quality requirements suddenly make sense:
• User friendliness - Usability

• Intuitiveness - Learnability

• Installability

• Serviceability - Maintainability

232 Evo - Keio-SDM - Oct 2010

TimeLine exercise example

• Preparing for student exams

*

233 Evo - Keio-SDM - Oct 2010

What we did

234 Evo - Keio-SDM - Oct 2010

TimeLine exercise for your Project

• What is the FatalDate, how many weeks left

• What is the expected result (Business Case / Reqs)

• What do you have to do to achieve that result

• Cut this into chunks and make a list of chunks of activities

• Estimate the chunks (in weeks or days)

• Calculate number of weeks

• Compensate for estimated incompleteness of the list

• How many people are available for the work
1. More time needed than available
2. Exactly fit
3. Easily fit

• Case 1 and 2: work out the consequence at this level

• Case 3: go ahead (but don’t waste time!)

235 Evo - Keio-SDM - Oct 2010

Business Case

236 Evo - Keio-SDM - Oct 2010

Business Case

• Why are we running a project ?

• The new project improves previous performance

• Types of improvement:
• Less loss

• More profit

• Doing the same in shorter time

• Doing more in the same time

• Being happier than before

• In short: Adding Value

237 Evo - Keio-SDM - Oct 2010

Higher Productivity

• All functionality we produce does already exist

• The real reason for running our projects is
creating better performance

• Improvement of value, productivity, success, happiness
for our customers through users

238 Evo - Keio-SDM - Oct 2010

Improving on existing qualities

• Usability.Productivity: V8.5 V9.0

• Time to set up a typical specified report 65 20 min

• Time to generate a survey 120 0.25 min

• Time to grant access to report,
distribute logins to end-users 80 5 min

• Usability.Intuitiveness:

• Time for medium experienced programmer
to find out how to do ... 15 5 min

• Capacity.RuntimeConcurrency

• Max number of concurrent users,
click-rate 20 sec, response time < 0.5 sec 250 6000 users

after FIRM / Gilb 2005

265 25.25 min

239 Evo - Keio-SDM - Oct 2010

How many Business Cases ?

• Do you have a Business Case documented for your project ?

• How many Business Cases ?

• There are usually at least two Business Cases:
• Theirs
• Yours

• So, how many Business Cases will there probably be in
your project ?

240 Evo - Keio-SDM - Oct 2010

Nobody’s working on the project yet

Return on Investment (RoI)
+ Benefit of doing - huge (otherwise other projects would be more rewarding)

– Cost of doing - project cost, usually minor compared with other costs

– Cost of doing nothing - every day we start later, we finish later

– Cost of being late - lost benefit

doing nothing doing benefit

idea start done

241 Evo - Keio-SDM - Oct 2010

Business Case

• What to improve and Why

• Used to continually align the Projects progress
to the business objectives

• Drives the decision making processes

• Will probably change during the project

• Stakeholders

• Expected Return on Investment (RoI)
Benefit of doing – Cost of doing – Cost of delay – Cost of doing nothing

• Total LifeCycle

242 Evo - Keio-SDM - Oct 2010

0th order approximations

• In the Business Case we often use 0th order estimations

• Order of magnitude

• Better than 0 < guess <  (any number is better than no number)

• 0th order is better than no clue

• 1st order is often less accurate than 0th order

• Using two different ways of estimation for crosscheck

• Errors may average if we estimate several pieces

243 Evo - Keio-SDM - Oct 2010

RoI - Return on Investment

start use

in
ve

st
m

e
n

t
re

tu
rn

doing only what is needed,
and doing it more efficiently

more people ?

Ostrich
(letting it
 happen)

more people ??

244 Evo - Keio-SDM - Oct 2010

Business Case exercise (groups of 2 or 3 people)

Write down a (simplified) Business Case
for your current project

• What is going to be improved - and what not

• Why are we doing this

• Who’s waiting for it

• When do they need it

• Expected Return on Investment (RoI)
Benefit of doing – Cost of doing – Cost of delay – Cost of doing nothing

245 Evo - Keio-SDM - Oct 2010

Stakeholders

246 Evo - Keio-SDM - Oct 2010

Stakeholders are people

• Every project has some 3020 Stakeholders

• Stakeholders have a stake in the project

• The concerns of Stakeholders are often contradictory
• Apart from the Customer they don’t pay

• So they have no reason to compromise !

• In many cases, finally, we all pay

• Some Stakeholders are victims of the project
• They have no reason for the project to succeed, on the contrary

• Project risks, happening in almost every project

• No excuse to fail !

result

people

247 Evo - Keio-SDM - Oct 2010

Victims can be a big Risk

Narita Airport …?

248 Evo - Keio-SDM - Oct 2010

The two donkeys:

Competition
or
Cooperation ?

249 Evo - Keio-SDM - Oct 2010

What are the Requirements for a Project ?

• Requirements are what the Stakeholders require

but for a project ...

• Requirements are the set of stakeholder needs that
the project is planning to satisfy
This is what you’ll get, if you let us continue

• The set of Stakeholders doesn’t change much

• Do you have a checklist of possible Stakeholders ?

250 Evo - Keio-SDM - Oct 2010

No Stakeholder?

• No Stakeholder: no requirements

• No requirements: nothing to do

• No requirements: nothing to test

• If you find a requirement without a Stakeholder:
• Either the requirement isn’t a requirement

• Or, you haven’t determined the Stakeholder yet

• If you don’t know the Stakeholder:
• Who’s going to pay you for your work?

• How do you know that you are doing the right thing?

• When are you ready?

251 Evo - Keio-SDM - Oct 2010

Which stakeholders ?

• Documentation

• Prototypes

• Who will be trying to make us fail

• What do we need to succeed

• Who defines success

• How much is enough

252 Evo - Keio-SDM - Oct 2010

Stakeholder exercise

• Write down a list of Stakeholders for your project
environment

• Discuss with neighbour

253 Evo - Keio-SDM - Oct 2010

Requirements

254 Evo - Keio-SDM - Oct 2010

Top-level Requirement for the Organization

• We must earn a living, and perhaps some profit

• We shouldn't work at a loss

• So:

We should profit from our work

• But:

Customers provide our income

255 Evo - Keio-SDM - Oct 2010

Top level Requirement for any Project

• Providing the customer with
• what he needs

• at the time he needs it

• to be satisfied

• to be more successful than he was without it

• Constrained by (win - win)

• what the customer can afford

• what we mutually beneficially and satisfactorily can deliver

• in a reasonable period of time

256 Evo - Keio-SDM - Oct 2010

Wish Specification

Nice Input

257 Evo - Keio-SDM - Oct 2010

Requirements Compliance ?

The question is not

• to comply with the original Requirements

but

• to make it work according to the top level requirement

Watching over the first line of shoulders

258 Evo - Keio-SDM - Oct 2010

Who’s waiting for it ?

We’re doing
something

Who’s waiting for it ?

Who can help us to do it better ?

doing
something

us

doing
something

doing
something

For whom ?

Who’s help ?

Helping to be more successful

259 Evo - Keio-SDM - Oct 2010

Wish Specification

• What Wish Specification did you receive ?

• How did you receive it ?

• From whom ?

• What did you do ?

• Was it complete ?

• Was it clear ?

• Did it reveal the problem to be solved ?

260 Evo - Keio-SDM - Oct 2010

The Requirements Problem

The hardest part of building a system is deciding precisely what to build.

No other part of the work so cripples the resulting system if done wrong.

No other part is more difficult to rectify later.

Fred Brooks, in No Silver Bullet: Essence and Accidents of Software Engineering (1987)

It was a problem in 1987

261 Evo - Keio-SDM - Oct 2010

The Requirements Problem

From time to time I work as an expert witness in software lawsuits.

Most of the cases are very similar - the contracts are ambiguous and

what the client expects is not what the vendor thought was meant.

You can trace the lawsuit back to problems with requirements and

project management.

Capers Jones, in Conflict and Litigation Between Software Clients and Developers (1999)

12 years later, not much has changed…

262 Evo - Keio-SDM - Oct 2010

Requirements carved in stone ?

• We don’t know the real requirements

• They don’t know the real requirements

• Together we’ll have to find out (stop playing macho!)

• What the customer wants he cannot afford

• Is what the customer wants what he needs?

• People tend to do more than necessary
(especially if they don’t know exactly what to do)

If time, money, resources are limited,
we should not overrun the budgets

263 Evo - Keio-SDM - Oct 2010

Fallacy of ‘all’ requirements

• “We’re done when all requirements are implemented”

• Isn’t delivery time a requirement ?

• Requirements are always contradictory

• Do we really know the real requirements ?

• Who’s requirements are we talking about ?

• Are customers able to define requirements ?
• Customers specify things they do not need

• And forget things they do need

• They’re even less trained in defining requirements than we are

• What we think we have to do should fit the available time

• Use the Business Case

264 Evo - Keio-SDM - Oct 2010

Requirements Compliance ?

The question is not

• to comply with the original Requirements

but

• to make it work according to the top level requirement

Watching over the first line of shoulders

265 Evo - Keio-SDM - Oct 2010

Customer Success

• Customer
• Orders the system

• Pays for the system

• Success and failure
• Through users of the system

• More general: through Stakeholders

266 Evo - Keio-SDM - Oct 2010

Use Cases / Scenarios

• Used to capture product usage and high level features

• Usage data is essential to requirements generation and
validation activities

• Use cases are easy to read and comprehend

• Use cases are not the same as requirements
(Rational/IBM wants us to believe they are)

• Mis-Use Cases are as important
• 20% of the software is there to make the computer

do what it should do

• 80% of the software is there to make the computer
not do what it should not do

• Surely other fields are similar - can you think of examples ?

267 Evo - Keio-SDM - Oct 2010

Basic Types of Requirements

• Functional binary

• What the system must do

• Functional Requirements Scope the Project

• Functional requirements are binary (they’re there, or not there)

• Quality / Performance* scalar

• How much to enhance the performance of the selected functions

• Negotiable: there is always contradiction between requirements

• Constraints binary / scalar

• What should we not do, be aware of, be limited by

• There requirements are basically non-negotiable

* Better not use non-functional requirements !

268 Evo - Keio-SDM - Oct 2010

Performance Requirements

• How fast

• How big

• How nice to see

• How nice to use

• How accurate

• How reliable

• How secure

• How dependable

• How well usable

• How well maintainable

• How well portable

• How well ….

269 Evo - Keio-SDM - Oct 2010

Extended ISO Model

Functionality
suitability
accuracy
interoperability
compliance
security
traceability

Reliability
maturity
fault tolerance
recoverability
availability
degradability

Usability
understandability
learnability
operability
explicitness
customisability
attractivity
clarity
helpfulness
user-friendlyness

Efficiency
time behavior
resource behavior

Portability
adaptability
installability
conformance
replaceability

Maintainability
analyzability
changeability
stability
testability
manageability
reusability

ISO9126 - QUINT

270 Evo - Keio-SDM - Oct 2010

Constraints

• What it should not do

• Budget
• Money

• Time

• People
• You’d want to have the best in your team

• You’ll have to do with what you have. That’s the challenge !

• Standards

• Legal

• Political

• Ethical

271 Evo - Keio-SDM - Oct 2010

5 times “Why?”

• Freud and Jung:
• Problems are in our sub-consciousness

• Solutions pop up

• Solutions are how people tell their problems

• What’s your problem ?
• If there’s no problem, we don’t have to do something

• Within 5 times “Why?”
we usually come down to the real problem to solve
• Otherwise we will be perfectly solving the wrong problem

272 Evo - Keio-SDM - Oct 2010

Requirements exercise

• What are the Requirements of your current project?

Exercise:

• Write down 1 or 2 most important requirements

• With Stakeholders (Who’s waiting for it?)

• Try using 5 times “Why ?”

273 Evo - Keio-SDM - Oct 2010

The Requirements Paradox

• Requirements must be stable

• Requirements always change

 Use a process that can cope with the requirements paradox

You cannot foresee every change,
but you can foresee change itself

274 Evo - Keio-SDM - Oct 2010

The 2nd requirements paradox

• We don’t want requirements to change, however,

• Because requirements change now is a known risk:
We must provoke requirements change as early as possible

Perfect
Requirements

finish

275 Evo - Keio-SDM - Oct 2010

Requirements should be at one place only

Company
Standards

ProductRange
Requirements

Product
Specific

Requirements

Requirements

+

+

Data should be at one place only
Code should be at one place only

276 Evo - Keio-SDM - Oct 2010

Attributes of a Good Requirement

A Good Requirement is:

Relevant Clear Unique

Complete Elementary Verifiable

Consistent Concise Traceable

Unambiguous Correct No solution

Feasible Has no weak words

Does your project have Good Requirements?

277 Evo - Keio-SDM - Oct 2010

Rule

Rule: All quality requirements must be expressed quantitatively

Typical requirements found:

• The system should be extremely user-friendly

• The system must work exactly as the predecessor

• The system must be better than before

• It shall be possible to easily extend the system’s functionality
on a modular basis, to implement specific (e.g. local) functionality

• It shall be reasonably easy to recover the system from failures,
e.g. without taking down the power

278 Evo - Keio-SDM - Oct 2010

Lord Kelvin (1824 - 1907)

When you cannot measure it,

when you cannot express it in numbers,

your knowledge is of a meagre and unsatisfactory kind

 ...

It may be the beginning of knowledge,

but you have scarcely in your thoughts advanced

to the stage of science

279 Evo - Keio-SDM - Oct 2010

Can we measure everything ?

• How beautiful is music, a painting, a man/woman ?

• Beaty of a car, spacecraft, piece of electronics ?

• What’s your weight ?

• How clever are you ?

• Can you quantify ‘Love’ ?

 Not everything that counts can be measured,
and not everything that can be measured counts

Einstein

280 Evo - Keio-SDM - Oct 2010

Why quantifying ?

• The most important things in life cannot be measured,
the more important they are, the less you can measure them
Ron Baker

• Still
• The measurement isn’t a goal in itself

• Trying to define the measurement provides us with
better understanding what the problem really is about

Tom Gilb:
The fact that we can set numeric objectives and track them is powerful,

but in fact is not the main point. The main purpose of quantification is to

force us to think deeply, and debate exactly, what we mean, so that

others, later, cannot fail to understand us

281 Evo - Keio-SDM - Oct 2010

How to Measure Anything Douglas W. Hubbard

Definition of Measurement:

A quantitatively expressed reduction of uncertainty based on
one or more observations

Expected Value of Perfect Information: 100% reduction

Expected Value of Information: actual reduction

How to add, subtract, multiply, divide ranges of information:

use Monte Carlo simulation

282 Evo - Keio-SDM - Oct 2010

Somebody said the requirements should be SMART

• Do we have documented requirements ?

• Are they SMART ?

• S Specific

• M Measurable

• A Attainable

• R Realisable

• T At the right Time (some say: Traceable)

283 Evo - Keio-SDM - Oct 2010

Requirements with Planguage ref Tom Gilb

Definition:

RQ27:

Scale:

Meter:

Benchmarks (Playing Field):

Past:

Current:

Record:

Wish:

Requirements:

Must:

Must:

Goal:

Speed of Luggage Handling at Airport

Time between <arrival of airplane> and first luggage on belt

<measure arrival of airplane>, <measure arrival of first luggage on belt>,
calculate difference

2 min [minimum, 2009], 8 min [average, 2009], 83 min [max, 2009]

< 4 min [competitor y, Jan 2010]  <who said this?>, <Survey Feb2010>

57 sec [competitor x, Jan 2010]

< 2 min [2011Q3]  CEO, 19 Feb 2010, <document ...>

< 10 min [99%, Q4]  SLA

< 15 min [100%, Q4, Schiphol]  SLA

< 15 min [99%, Q2], < 10 min [99%, Q3], < 5 min [99%, Q4]  marketing

284 Evo - Keio-SDM - Oct 2010

Design to a Quality Requirement

• Electronic Hardware Engineering

Req 1

Past Must Goal Wish Record

By design

285 Evo - Keio-SDM - Oct 2010

Step-by-step example

Client Client Client Client

CPU

Disk

Server

CPU

Disk

Server

CPU

Disk

Server

network

Gradually reaching required response time

286 Evo - Keio-SDM - Oct 2010

Design to a Quality Requirement one step at the time

Req 1

Past Must Goal Wish Record

1 2 3

If the Quality Requirement is composed of several elements,
start with the best ROI

287 Evo - Keio-SDM - Oct 2010

Design to Multidimensional Quality Requirements

Req 2

Req 3

Past

Past Must

Must

Goal

Goal

Req 1

Past Must Goal Wish Record

1

2

4

5

6

7

3

288 Evo - Keio-SDM - Oct 2010

Requirements Case

• Organization collecting online giving for charities

• CEO: “Improve website to increase online giving for our
‘customers’ (charities)”

• Increasing market share for online giving

• Budget: 1M€ - 10 months

• Show results fast

Ref Ryan Shriver
ACCU Overload Feb 2009

• Organization collecting online giving for charities

• CEO: “Improve website to increase online giving for our
‘customers’ (charities)”

• Increasing market share for online giving

• Budget: 1M€ - 10 months

• Show results fast

• Organization collecting online giving for charities

• CEO: “Improve website to increase online giving for our
‘customers’ (charities)”

• Increasing market share for online giving

• Budget: 1M€ - 10 months

• Show results fast

289 Evo - Keio-SDM - Oct 2010

Objective: Monetary Donations

Name Monetary Donations

Scale Euro’s donated to non-profits through our website

Meter Monthly Donations Report

Monetary Donations

fail
12M

now
13M

goal
18M

Fail 12M

Now 13M [2008]  Annual Report 2008

Goal 18M [2009]

Monetary Donations

Ref Ryan Shriver
ACCU Overload Feb 2009

290 Evo - Keio-SDM - Oct 2010

Objective: Volunteer Time (Natura) Donations

Name Volunteer Time Donations

Scale Hours donated to non-profits through our website

Meter Monthly Donations Report

Fail 2700 hr

Now 2800 hr [2008]  Annual Report 2008

Goal 3600 hr [2009]

Volunteer Time Donations

fail
2700hr

now
 2800hr

goal
3600hr

Ref Ryan Shriver
ACCU Overload Feb 2009

291 Evo - Keio-SDM - Oct 2010

Goal: Market Share

Name Market Share

Scale Market Share %% online giving

Meter Quarterly Industry Report

Fail 5%

Now 6% [Q1-2009]  Quarterly Industry Report

Goal 10% [Q1-2010]

Market Share

fail
5%

now
6%

goal
10%

Ref Ryan Shriver
ACCU Overload Feb 2009

292 Evo - Keio-SDM - Oct 2010

Priorities are essential

• We don’t have the time we’d like to have

• We cannot do the impossible in impossible time,
even if we do our best

• To make the best of the available time,
we have to do less, without doing too little
(not doing what later proves to be unnecessary)

• Possible because people tend to do more than necessary
(especially if they don’t know exactly what to do)

• Better 80% 100% done, than 100% 80% done
Let it be the most important 80%

• Importance may change all the time:
prioritizing is a constant dynamic process

293 Evo - Keio-SDM - Oct 2010

Impact Estimation example

Impact
Estimation

Monthly
Donations

Facebook
integration

Image & video
uploads

Total effect
for requirement

€€ donations
13M€  18M€

80%
30%

30%
30%

50%
20%

160%
 80%

Time donations
2800hr3600hr

10%
10%

50%
20%

80%
20%

140%
 50%

Market share
6%  10%

30%
20%

30%
20%

20%
10%

80%
 50%

Total effect
per solution

120%
60%

110%
70%

150%
50%

380%
180%

Cost - money
 % of 1M€

30%
10%

20%
10%

50%
20%

100%
 40%

Cost - time
 % of 10 months

40%
20%

20%
10%

50%
20%

110%
 50%

Total effect /
money budget

120/30 = 4
1.5 … 9

110/20 = 5.5
1.3 … 18

150/50 = 3
1.4 … 6.7

Total effect / time
budget

120/40 = 3
1 … 9

120/20 = 6
1.3 … 18

120/50 = 2.4
1.4 … 6.7

Ref Ryan Shriver - ACCU Overload Feb 2009

Impact
Estimation

Monthly
Donations

Facebook
integration

Image & video
uploads

Total effect
for requirement

€€ donations
13M€  18M€

80%

30%

50%

160%

Time donations
2800hr3600hr

10%

50%

80%

140%

Market share
6%  10%

30%

30%

20%

80%

Total effect
per solution

120%

110%

150%

380%

Cost - money
 % of 1M€

30%

20%

50%

100%

Cost - time
 % of 10 months

40%

20%

50%

110%

Total effect /
money budget

120/30 = 4

110/20 = 5.5

150/50 = 3

Total effect / time
budget

120/40 = 3

120/20 = 6

120/50 = 2.4

Impact
Estimation

Monthly
Donations

Facebook
integration

Image & video
uploads

Total effect
for requirement

€€ donations
13M€  18M€

80%
30%

30%
30%

50%
20%

160%
 80%

Time donations
2800hr3600hr

10%
10%

50%
20%

80%
20%

140%
 50%

Market share
6%  10%

30%
20%

30%
20%

20%
10%

80%
 50%

Total effect
per solution

120%
60%

110%
70%

150%
50%

380%
180%

Cost - money
 % of 1M€

30%
10%

20%
10%

50%
20%

100%
 40%

Cost - time
 % of 10 months

40%
20%

20%
10%

50%
20%

110%
 50%

Total effect /
money budget

120/30 = 4
1.5 … 9

110/20 = 5.5
1.3 … 18

150/50 = 3
1.4 … 6.7

Total effect / time
budget

120/40 = 3
1 … 9

120/20 = 6
1.3 … 18

120/50 = 2.4
1.4 … 6.7

294 Evo - Keio-SDM - Oct 2010

Quantified
Requirements

295 Evo - Keio-SDM - Oct 2010

Examples of Scales

Environmental Noise
dBA at 1.0 meter

System Security
Time required to <break into the system>

Software Maintainability
Time needed from <acceptance of change> to <availability of change>

System Reliability
The Mean Time Before Failure (MTBF) of the system

System Learnability
Average time for <Novices> to become <Proficient> at a
defined set of tasks

Productivity
Number of FTE’s (Full Time Equivalent)

296 Evo - Keio-SDM - Oct 2010

Examples of Scale Templates (re-use of Requirements!)

Availability
% of <Time Period> a <System> is <Available> for its <Tasks>

Adaptability
Time needed to <Adapt> a <System> from <Initial State> to <Final State>
using <Means>

Usability
Speed for <Users> to <correctly> accomplish <Tasks> when
<given Instruction> under <Circumstances>

Reliability
Mean time for a <System> to experience <Failure Type> under <Conditions>

Integrity
Probability for a <System> to <Cope-with> <Attacks> under <Conditions>
Define “Cope-with” = {detect, prevent, capture}

297 Evo - Keio-SDM - Oct 2010

Decomposition of Complex Concepts

• If you cannot quantify a quality, we call it a Complex Concept

• Decompose complex qualities into elementary ones

• Complex ideas may require several scales of measure

298 Evo - Keio-SDM - Oct 2010

Dependability is a Complex Concept

Dependability.Availability
Readiness for correct service

Scale: % of <TimePeriod> a <System> is <Available> for its <Tasks>

Dependability.Reliability
Continuity of correct service

Scale: Mean time for a <System> to experience <Failure Type> under
<Conditions>

Dependability.Safety
No danger, harm, risk

Example: star-system for cars (adult / child, in-car / pedestrian)

Dependability.Security
Free from intrusions (theft, alteration)

Scale: Time required to <break into the system>

299 Evo - Keio-SDM - Oct 2010

Availability

• Dependability.Availability
• Readiness for correct service

• Scale: % of <TimePeriod> a <System> is <Available> for its <Tasks>

• Probability that the system will be functioning correctly
when it is needed

• Examples
• (preventive) maintenance may decrease the availability

• Telephone exchange (no dial tone) < 5 min per year (99.999%)

• Snow on the road

300 Evo - Keio-SDM - Oct 2010

Availability

Availability %
Downtime

per year
Downtime
per month

Downtime
per week

Typical usage

90% 36.5 day 72 hr 16.8 hr

95% 18.25 day 36 hr 8.4 hr

98% 7.30 day 14.4 hr 3.36 hr

99% 3.65 day 7.20 hr 1.68 hr

99.5% 1.83 day 3.60 hr 50.4 min

99.8% 17.52 hr 86.23 min 20.16 min

99.9% (three nines) 8.76 hr 43.2 min 10.1 min Web server

99.95% 4.38 hr 21.56 min 5.04 min

99.99% (four nines) 52.6 min 4.32 min 1.01 min Web shop

99.999% (five nines) 5.26 min 25.9 sec 6.05 sec Phone network

99.9999% (six nines) 31.5 sec 2.59 sec 0.605 sec Future network

301 Evo - Keio-SDM - Oct 2010

Incredible
Public Transport
Chip-Card

What would you design the system do if

• The system is unavailable for it’s intended task ?

• The server-connection is unavailable ?

• … ?

Cannot
process

Check
out

here

302 Evo - Keio-SDM - Oct 2010

Portability Goals

Must

Wish

1st 2nd 3rd 4th 5th

Goal

Goal

Goal

Release:

Better

303 Evo - Keio-SDM - Oct 2010

Nice things

• OUT !
• Isn’t paid for

• May not be needed by the customer

• Isn’t checked for consistency

• Doesn’t get tested

• If the customer finds out, you’ll have to support it

• May cause trouble later

• If it’s so important:
• Make it a change request

• Make the customer pay for the extra (nobody else will)

• Better: decide what less important requirement to discard instead

• We can add any requirement, as long as we also delay a less
important one

304 Evo - Keio-SDM - Oct 2010

Example: Road-Pricing in the Nederlands

Realize a road-pricing system in four years
1. Fitting an electronic system in 8 million cars

2. Camera’s for number plate recognition

3. Central system for data processing and invoicing

4. Law changes by politicians (tax law, traffic law)

5. Price differentiation for time, place, emissions

Will this succeed?

305 Evo - Keio-SDM - Oct 2010

Requirements exercise: (groups of 2 or 3 people)

Specify a quality / performance requirement for your
current Project, using Planguage

Try to use:

Note: you may end up with a different requirement
than you started with … (what is it really about ?)

Benchmarks:

• Past

• Current

• Record

• (Wish)

Requirements:

• Must/Fail

• Goal

Definition:

• Ambition

• Scale

• Meter

• Stakeholders

306 Evo - Keio-SDM - Oct 2010

Ambition

Scale

Meter

Stakehldrs

Past

Current

Record

Wish

Must/Fail

Goal

307 Evo - Keio-SDM - Oct 2010

Architecture
and
Design

308 Evo - Keio-SDM - Oct 2010

Design is always a compromise

• Design is the process of collecting and selecting options how to
implement the requirements

• The Requirements are always conflicting

example:

• Performance

• Budget (time, money)

309 Evo - Keio-SDM - Oct 2010

Design and requirements

• Design:
Finding the best compromise between the conflicting
requirements

• All requirements are equal,
but some are more equal than the others

• Some aren’t really requirements

• Some elements will never be used

• Some requirements are incorrect

• A lot of real requirements are unexplored

310 Evo - Keio-SDM - Oct 2010

Design Process

• Collect obvious design(s)

• Search for one non-obvious design

• Compare the relative ROI of the designs

• Select the best compromise

• Describe the selected design

• Books:
• Ralph L. Keeyney: Value Focused Thinking

• Gerd Gigerenzer: Simple Heuristics That Make Us Smart

311 Evo - Keio-SDM - Oct 2010

Think Process
for Problem Solving

Think Process 1

Ref. Malotaux – Van der Goot

312 Evo - Keio-SDM - Oct 2010

Think Process for Problem
Solving

Think Process 2 Think Process 3 Think Process 1

Ref. Malotaux – Van der Goot

313 Evo - Keio-SDM - Oct 2010

Impact Estimation example

Ref Ryan Shriver - ACCU Overload Feb 2009

Impact
Estimation

Monthly
Donations

Facebook
integration

Image & video
uploads

Total effect
for requirement

€€ donations
13M€  18M€

80%
30%

30%
30%

50%
20%

160%
 80%

Time donations
2800hr3600hr

10%
10%

50%
20%

80%
20%

140%
 50%

Market share
6%  10%

30%
20%

30%
20%

20%
10%

80%
 50%

Total effect
per solution

120%
60%

110%
70%

150%
50%

380%
180%

Cost - money
 % of 1M€

30%
10%

20%
10%

50%
20%

100%
 40%

Cost - time
 % of 10 months

40%
20%

20%
10%

50%
20%

110%
 50%

Total effect /
money budget

120/30 = 4
1.5 … 9

110/20 = 5.5
1.3 … 18

150/50 = 3
1.4 … 6.7

Total effect / time
budget

120/40 = 3
1 … 9

120/20 = 6
1.3 … 18

120/50 = 2.4
1.4 … 6.7

314 Evo - Keio-SDM - Oct 2010

Impact
Estimation
Example

ref
Tom Gilb
Competitive Engineering

315 Evo - Keio-SDM - Oct 2010

Impact Estimation principle

Design
Idea #1

Design
Idea #2

Design
Idea #3

Total
Impact

Objectives
Impact on
Objective

Impact on
Objective

Impact on
Objective

Sum of
Impacts on
Objectives

Resources
Time

Money

Impact on
Resources

Impact on
Resources

Impact on
Resources

Sum of
Impact on
Resources

Benefits to
Cost Ratio

Benefits
Cost

Benefits
Cost

Benefits
Cost

What to achieve

Cost to achieve it

Return on
Investment

Possible solutions to achieve it

How much % of what we
want to achieve do we

achieve by this solution

Could we get all,
within the budgets
of time and cost ?

At what cost ?

316 Evo - Keio-SDM - Oct 2010

No Design in the Requirements

MIL-STD-498

• Requirements are what the acquirer cares enough about to make
conditions for acceptance (may be “what” or “how”)

• Design is the set of decisions made by the developer in response to
requirements (may be “what” or “how”)
(solutions plus decisions)

• Requirement: A characteristic that a system must possess in order
to be acceptable for the acquirer

• Design: Solutions plus decisions by the designers

• Specification: This is what we are going to make and how

My definition for requirements:

• Requirements are the set of stakeholder needs that a project is
planning to satisfy

317 Evo - Keio-SDM - Oct 2010

No Design in the requirements, but ...

Needs:
what do we need

Options:
how can we do it Selected solution:

this is how we are going to do it

Design provides the
Requirements for the next level

Requirements

Design

Requirements

Design

Requirements

Design

Requirements

Design

318 Evo - Keio-SDM - Oct 2010

Priorities are essential

• We don’t have the time we’d like to have

• We cannot do the impossible in impossible time,
even if we do our best

• To make the best of the available time,
we have to do less, without doing too little
(not doing what later proves to be unnecessary)

• Possible because people tend to do more than necessary
(especially if they don’t know exactly what to do)

• Better 80% 100% done, than 100% 80% done
Let it be the most important 80%

• Importance may change all the time:
prioritizing is a constant dynamic process

319 Evo - Keio-SDM - Oct 2010

Experiments

• An Experiment is for finding out how to do something

• Results generated in an Experiment shall be thrown away

• We don’t want scars in our delivered product/system

• Once we know how to do it,
we use that knowledge in the design

• The product of development is the design (‘pile of paper’)

• Implementation is a one-to-one translation of the design
into implementation

320 Evo - Keio-SDM - Oct 2010

DesignLog (project level)

• In computer, not loose notes, not in e-mails, not handwritten
• Text
• Drawings!
• On subject order
• Initially free-format
• For all to see

• All concepts contemplated
• Requirement
• Assumptions
• Questions
• Available techniques
• Calculations
• Choices + reasoning:

• If rejected: why?
• If chosen: why?

• Rejected choices

• Final (current) choices

• Implementation

Chapter
Requirement  What to achieve
.
Assumptions
Questions + Answers
.
.
.
.
Design options
Decision criteria
Decision  implementation spec

New date: change of idea:
Design options
Decision criteria
Decision  implementation spec

321 Evo - Keio-SDM - Oct 2010

ProcessLog (department / organization level)

• In computer, not loose notes, not in e-mails, not handwritten
• Text
• Graphics (drawings)
• On subject order
• Initially free-format
• For all to see

• All concepts contemplated
• Requirement
• Assumptions
• Questions
• Known techniques
• Choices + reasoning :

• If rejected: why?
• If chosen: why?

• Rejected choices

• Final (current) choices

• Implementation

Chapter
Requirement  What to achieve
.
Assumptions
Questions + Answers
.
.
.
.
Design options
Decision criteria
Decision  implementation spec

New date: change of idea:
Design options
Decision criteria
Decision  implementation spec

322 Evo - Keio-SDM - Oct 2010

Perceived
process:

what you think
you do

Actual
process:

what you do

Official
process:

what you are
supposed to do

Target
process:
what you
should do Forced

process:
what the system
wants you to do

Five processes

323 Evo - Keio-SDM - Oct 2010

Risk

324 Evo - Keio-SDM - Oct 2010

Risk Definition

An uncertain event or condition that,

if it occurs,

has a negative effect

on a project’s objectives
(PMBOK)

 0% probability is not a risk

 100% probability is an issue or a problem

325 Evo - Keio-SDM - Oct 2010

Defect and Risk

If a Defect is

 a cause of a problem experienced by a stakeholder of the
system, ultimately by the customer

then

• Not satisfying the Goal is a defect

• Being late may be a defect

• Being over budget may be a defect

and Risk is

 an event that may cause a defect

326 Evo - Keio-SDM - Oct 2010

Our own Risk

Getting less profit than expected
• Takes more time to develop

• Costs more to develop

• Operating cost more than expected

• Performance less than expected

• Guarantee

• Contract liability

• Legal liability

• Claims

327 Evo - Keio-SDM - Oct 2010

Confidence

of Estimate

Confidence

of Estimate

Confidence

of Estimate

Risk
Model

Prevention

Plans

Contingency

Plans

worst
case ?

ImpactEvent Cost

Probability

of Event

Probability

of Impact

Impact

Driver(s)

Event

Driver(s)

Risk Value

x x

=

CPPV ieR 

328 Evo - Keio-SDM - Oct 2010

Risk Management

Step 3:

Prioritize

Step 4:

Resolve

Step 1

Identify

Step 2:

Analyze

Step 5:

Monitor

Step 5:

Monitor

Step 5:

Monitor

Measures to

- Avoid

- Reduce

- Pass-on

- Accept

- Control

Risk

329 Evo - Keio-SDM - Oct 2010

Prioritize Risk?

Low Risk

Medium Risk

High Risk

Likelihood of Event

C
o

n
se

q
u

e
n

ce
 o

f
E

ve
n

t

very
likely

not
likely

benign

harsh

Low Risk

Medium Risk

High Risk

Likelihood of Event

C
o

n
se

q
u

e
n

ce
 o

f
E

ve
n

t

very
likely

not
likely

benign

harsh

Risk Priority = Likelihood x Consequence ??

ref. INCOSE SE Handbook

330 Evo - Keio-SDM - Oct 2010

Mathematical
Risk
Management
can be
risky

ref
Carlo Rafele,
David Hillson,
Sabrina Grimaldi

331 Evo - Keio-SDM - Oct 2010

Checklists for brainstorm

• Human risk
• In the project
• After the project

• Technical risk
• Can we make it
• Will it survive

• Environmental risk
• Example: CE

• Regulatory risk
• Example: CE

• Consequential risk

• …

Each of these can have
it’s own checklist
to trigger the recognition
of real risks

332 Evo - Keio-SDM - Oct 2010

Project Management is Risk Management

• Don’t set Risk Management apart

• Call it by the proper names:
• Requirements
• Planning
• Design
• etc

• Risk principles are quite simple

• Implementation as found in literature is vague

• Remember Murphy’s Law

333 Evo - Keio-SDM - Oct 2010

Murphy’s Law

 Whatever can go wrong, will go wrong

 Should we accept fate?

Murphy’s Law for Engineers:

 Whatever can go wrong, will go wrong …

Therefore:

 We should actively check all possibilities that can go wrong
and make sure that they cannot happen

334 Evo - Keio-SDM - Oct 2010

What are Risks in your Projects?

• ...

• ...

• ...

• Are these really Risks?

• 0% probability is not a Risk

• 100% probability is not a Risk

335 Evo - Keio-SDM - Oct 2010

Controlling Risk by design

• Every project is unique
(otherwise it’s production)

however

• A lot is always the same:
• Every project is done by people

• No project is very much unique

• There are many similarities (known risks)

• So, a lot is predictable

• We know the Requirements will change (but don’t know which)

• Engineers control risks by design (= engineering)

336 Evo - Keio-SDM - Oct 2010

Many known risks are hardly risks

• Most of the real risks are in the product

• Most of the known risks are in the project

• We don’t only design the product,

• We also design the project

• If we control 80% of the risks by design

• We have more time to handle the 20% real risks

VRisk = Pevent  Pimpact  C Pevent = 1

Pimpact  0

337 Evo - Keio-SDM - Oct 2010

Risk mitigation

avoid
Pi = 0

reduce

  

pass-on
subcontract ??

insure

accept
self-insure

control
Pi 

VRisk = Pevent  Pimpact  Cost

338 Evo - Keio-SDM - Oct 2010

Swiss Cheese model ref James Reason

Can we add some cheese from Holland?

339 Evo - Keio-SDM - Oct 2010

Product Risks

• Development
• Requirements errors

• Incorrect Assumptions

• Design errors

• Calculation errors

• Implementation errors

• Maintenance
• Incorrect or insufficient maintenance

• Use
• Operator errors

• User errors

• Victims

• Technical errors

R
o

o
t-

ca
u

se
 o

f
ri

sk

340 Evo - Keio-SDM - Oct 2010

How do Evo processes deal with Risk ?

• Delivering the wrong result

• Delivering at the wrong time

• Not making the customer happy and more successful

• Promising more than we can do

• Doing the wrong things for too long

• Trying to do more than we can

• Making more mistakes than necessary (fatigue)

• Coping with suppliers beyond our control

• Gold Plating (doing more than needed)

• Interrupts: losing time on seemingly important things

341 Evo - Keio-SDM - Oct 2010

Evo Processes

• Evo Planning
• Risk of delivering at the wrong time

• Risk of delivering late

• Risk of delivering unnecessary things

• Evo Requirements Management
• Risk of delivering the wrong things

• Risk of delivering unnecessary things

• Evo Design process
• Selecting the best compromise for the contradicting requirements

• Pro-active Synchronization
• Risk of others causing us to fail

• Evo Interrupt process
• Risk of losing time on seemingly important things

342 Evo - Keio-SDM - Oct 2010

Development time is limited

• Having not enough development time is a safety risk

• Working overtime is a safety risk

• We must use the limited available time well

• Therefore we should plan well
• What do we have to do?

• What can we do?

• Taking the consequence
• (People tend to do more than necessary,

especially if they don’t know exactly what to do)

• What are we going to do?

• What are we not going to do? (saving time!)

• Carefully select the most important work

• Finding out as quickly as possible whether we are doing the right things

343 Evo - Keio-SDM - Oct 2010

What do we do to stay on time ?

• Short term:
• Many short cycles: continual result and opportunity to adjust

• Changing from optimistic to realistic estimation

• Estimating hours, not days

• Estimation is a TimeBox

• Focus on Value Delivery

• Longer term
• TimeLine

• Continuous stakeholder consequences / agreement

• TaskSheet (first think, then do)

344 Evo - Keio-SDM - Oct 2010

What do we do to stay on budget ?

• Budget is constraint in time, money

• Clearly define how much time and money are available:
Hard limit !

• If we don’t get a limit, we’ll create our own (BudgetBox)

• As quickly as possible finding out what is really needed

• If it doesn’t fit the budgets, it won’t be done (unless …)

345 Evo - Keio-SDM - Oct 2010

How to deliver Quality

• Early and frequent deliveries to check requirements and
assumptions: only doing the right things

• Stakeholder identification en regular contact to find out
together what is really needed

346 Evo - Keio-SDM - Oct 2010

Mastering unclearness

• Analysis tasks:
• What do I know now

• What do I still not know

• What do I still have to find out

• Defining and estimating Tasks

• Tight TimeBox

• Result of analysis task:
• What’s the benefit ?

• What’s the cost ?

• How important is it (where does it fit in) ?

347 Evo - Keio-SDM - Oct 2010

Mastering supplier risks

• Active synchronisation

• Showing the importance of FatalDates

• Proactively solving problems

• Foreseeing delays and doing something about it,
before it’s too late

348 Evo - Keio-SDM - Oct 2010

Mastering client risks

• Are they capable to receive the result ?

• Are they ready to do something with the result ?

• Is the client system ready ?

 Frequent deliveries solve these problems

349 Evo - Keio-SDM - Oct 2010

When is the project done ?

• Using exit criteria

• Goal levels met

• Making sure the users will become more successful
• If the users won’t be more successful, they’re not going to generate

our salaries

• Risk management:
• Making sure our salaries can and will be paid

350 Evo - Keio-SDM - Oct 2010

Remaining Risks

• Risks beyond our control  Complex project
• Within or beyond control of client

• Within or beyond control of suppliers

• Example: Satellite launching date moving
• Extra costs for maintaining project support

• Extra costs of users waiting, having prepared using the satellite

• Meanwhile new requirements may emerge

• Example: Delays caused by compulsory purchase procedures

• Weather

• Traffic Jams ?

351 Evo - Keio-SDM - Oct 2010

Personnel Shortfalls Boehm 1991

• There are a certain number of people in the organization

• If we don’t get the people we think we need, they are
working on more profitable activities

• Using TimeLine, we inform management about the
consequences

• This is not risk - it’s choice

352 Evo - Keio-SDM - Oct 2010

Unrealistic schedules and budgets Boehm 1991

• How can we speak about realistic schedules
if the requirements will change anyway?

• If the requirements aren’t clear (which they almost never are),

any schedule will do

• If the time/cost budgets are insufficient to get a profit, we
shouldn’t even start or continue

• If management/customers insist on unrealistic schedules (Check),
they may need education (Act), or they want us to fail

• People can quickly learn to change from optimistic to realistic
estimators and thus live up to their promises

• We continuously update the TimeLine to predict what we will get,
what not and what we may get

• Using “Earned Value” for calibration (reflection)

• And “Value Still to Earn” for prediction (preflection)

353 Evo - Keio-SDM - Oct 2010

Developing the wrong product Boehm 1991

• Why do we have Requirements?

• We don’t know the real Requirements

• They don’t know the real Requirements

• The circumstances change

• First develop the problem, then the solution

• Without feedback we probably are developing
the wrong product

• Rapid feedback is used to quickly learn about the
real Requirements and which assumptions are wrong

354 Evo - Keio-SDM - Oct 2010

Developing the wrong user interface Boehm 1991

• The goal is making the customer satisfied and more
successful than he already was

• If the users don’t become more productive we fail

• We don’t want to fail

• So we quickly find out
what the right user interface should be

355 Evo - Keio-SDM - Oct 2010

Gold plating Boehm 1991

• We do as little as possible at every step

• We specify Must and Goal values

• When we reach the Goal value, we are done

• People tend to do more than necessary, especially if it is
not clear what should be done

• So we define what should be done and what not

• Not so easy for technical people

• Developing the problem first provides focus

• We call doing more than needed: a hobby

356 Evo - Keio-SDM - Oct 2010

Continuing stream of Requirements changes Boehm 1991

• Requirements do change because

• We learn

• They learn

• The circumstances change

• If we deliver according to obsoleted requirements, we
don’t create customer success

• We know that requirements will change, so we have to
find out quickly which will change, therefore

• We even provoke requirements change as quickly as
possible

357 Evo - Keio-SDM - Oct 2010

If we add something …

If we add something, something else will not be done

now FatalDate

358 Evo - Keio-SDM - Oct 2010

Problems with externally furnished components
Boehm 1991

• If our FatalDate has come, we have no excuse

• We use Active Synchronization to stay on top

359 Evo - Keio-SDM - Oct 2010

Real time performance shortfalls Boehm 1991

• This is why we have Performance Requirements

• Then we use engineering techniques to make sure the
system is according to the requirements

• Real time should and can be predictable
(using the right architecture !)

360 Evo - Keio-SDM - Oct 2010

Managers ignorance

• The product has to generate income

• If management impede the workers to produce the
product in the most optimal way ...

• Management usually is not stupid

• But if you don’t supply the right facts ...

• The boss may mess up the Result,
if he’s the owner of the company

• All the others have the option to leave

361 Evo - Keio-SDM - Oct 2010

Worst risk

• The worst risk is the one we forgot
• It’s within our control, but we didn‘t see it before it happened

• It’s beyond our control, but we saw it too late and/or
we didn’t react appropriately

• The trick is to be ahead of any problem, before it occurs

• Don’t ostrich: actively take your head out of the sand !

• Don’t keep it for yourself !

• If anybody complains, we’re too late

• Be paranoid, be proactive !

• If we control 80% of the risks by design,
we have a lot more time to address the remaining 20%

362 Evo - Keio-SDM - Oct 2010

Risk exercise

• Select a project

• What do you want to achieve ?

• What can impede achieving it ?

• What can you do about it ?

• What will you do about what ?

363 Evo - Keio-SDM - Oct 2010

Verification & Validation

Testing

QA

364 Evo - Keio-SDM - Oct 2010

Do you ever make a mistake?

• People make mistakes

• We are people

If we think we are done
there are still defects

365 Evo - Keio-SDM - Oct 2010

Costs of defects

The longer a defect stays in the system,
the more it costs to find and repair

366 Evo - Keio-SDM - Oct 2010

Cost of Requirements Defects

The longer a defect stays in the system,
the more it costs to repair

0

20

40

60

80

100

Reqs

Field

Reqs

Test

Field

Boehm,
1980s

Remus,
1980s

Kan,
1994

Hevner,
1997

Mean

Test

DM

367 Evo - Keio-SDM - Oct 2010

Typical Defect Injectors (cost breakdown)

7%

10%

28%

55%

After Bender Associates, 1996

DM

Designers Implementers

Requirements Specifiers

Other

368 Evo - Keio-SDM - Oct 2010

Inevitable consequence

People make

mistakes

We are people

Repair of problems
costs exponentially

more if found later

If we do something,

we introduce problems
So, when to solve

the problems?
Immediately after

making the mistake,
or even preferably:

by preventing mistakes

369 Evo - Keio-SDM - Oct 2010

Do we deliver Zero Defect products ?

• What do you think is acceptable ?

*

370 Evo - Keio-SDM - Oct 2010

Is Zero Defects possible ?

• Zero Defects is an asymptote

• When Philip Crosby started with Zero Defects in 1961,
errors dropped by 40% almost immediately

zero defects

“acceptable
 level”in

je
ct

io
n

of
 d

ef
ec

ts
 

time 
0

371 Evo - Keio-SDM - Oct 2010

The process of defect injection and detection

• Conventional (software) development:
• Development phase: inject bugs

• Debugging or Testing phase: find bugs and fix bugs

• Can’t we do better, or are we already doing things better ?

• Real Engineering is
doing (most) things First Time Right
(that’s why engineers have a full curriculum)

372 Evo - Keio-SDM - Oct 2010

373 Evo - Keio-SDM - Oct 2010

The Problem

• A defect is a problem encountered by the customer (through users)

• Users experience problems

apparently

• Projects produce defects

• Too few defects are found before delivery to the customer/users

however,

• There is a lot of knowledge how to reduce the generation and
proliferation of defects

And there is a large budget to do something about it:

• Some 50% of project time is consumed by all kinds of checking

• In software:
• About 50% of developed software is never used

• More than 50% of delivered software is never used

374 Evo - Keio-SDM - Oct 2010

Where do we make mistakes ?

• Wish specification Thank you, nice input

• Business Case Why are we doing it

• Requirements What the project agrees to satisfy

• DesignLog Selecting the ‘optimum’ compromise and how

 we arrived at this decision

• Specification This is how we are going to implement it

• Implementation Code, schematics, plans, procedures,

 hardware, documentation, training

• Process Log Describing how and why we arrived at which

 current practices

375 Evo - Keio-SDM - Oct 2010

Documents and Sources

Business case

Requirements Design Implement

source source source

Wish spec

source

376 Evo - Keio-SDM - Oct 2010

Defects

• A design does not have bugs, it has defects

• Defects do not emerge

• People make errors and thus cause defects

• Changing a requirement causes a lot of defects

Perfect
Requirements

finish

377 Evo - Keio-SDM - Oct 2010

Are defects a problem for you ?

• Which types of defects ?

• How do you know ?

• Perhaps there are problems you don’t even know ?

• What can we do about it ?

378 Evo - Keio-SDM - Oct 2010

Debugging ? ? ?

379 Evo - Keio-SDM - Oct 2010

Design during coding: trial-and-error method

380 Evo - Keio-SDM - Oct 2010

Bugs are so important

• People make mistakes; we are people

• “Software without bugs is impossible”

• Testers try to find as may bugs as possible

• Bugs are counted

• We try to predict the number of bugs we will find

• It is suspect if we don’t find the expected number

• Bugs are normal

• What would we do if there were no bugs any more?

 As long as we keep putting bugs in the center of the
testing focus, there will be bugs

, are they really?

381 Evo - Keio-SDM - Oct 2010

Defects found are symptoms of
deeper lying problems

Repairing apparent defects creates several risks:

• Repair is done under pressure

• We think the problem is solved

• We introduce scars

• After finding the real cause, the redesign may make the
repair redundant: time lost

• We keep repeating the same problems

 Do Root Cause Analysis and make sure
it never happens again

382 Evo - Keio-SDM - Oct 2010

Dijkstra (1972)

 It is a usual technique to make a program and then to test it

However:

 Program testing can be a very effective way to show
the presence of bugs

 but it is hopelessly inadequate for showing their absence

• Conventional testing:
• Pursuing the very effective way to show the presence of bugs

• The challenge is, however:
• Making sure that there are no bugs

• And how to show their absence if they’re not there

383 Evo - Keio-SDM - Oct 2010

Software testing

• 50% of defects is not found in test

• Repair of defects causes defects

• A compiler finds only 90% of syntax errors

• Of 4 defects:
2 found by compiler, 1 at test and 1 by the customer

• How much %% of your projects is used for
test, finding, repair, re-test?

• How much %% of the defects did you find and really fix?

• Now many of the defects will be repeated ?

384 Evo - Keio-SDM - Oct 2010

What is the main function of Testing and QA ?

• Deming:

• Quality comes not from testing, but from improvement of the
development process. Testing does not improve quality, nor
guarantee quality. It’s too late. The quality, good or bad, is
already in the product. You cannot test quality into a product.

  Development is the customer

• Testing helps developers to become perfect

• Testing is a project to run alongside and synchronized to
the development project

• Therefore, it must be organised like any other project

385 Evo - Keio-SDM - Oct 2010

Testing is very expensive

• You can prove the existence of a defect (if you found one)

• You cannot prove the absence of defects (if you didn’t find any)

• Proving the absence of defects is difficult

• Proving the existence of defects is also difficult

• Why do we put so much emphasis on finding defects?

• While what we want is no defects

• Testers should learn better how to prove the absence of
defects

while

• Developers should learn better how to avoid defects

• Testers can help them

386 Evo - Keio-SDM - Oct 2010

So, no testing?

• Testing is important

 however

• Goal should not be defect finding

• But rather measuring the quality of the production process

• And feedback to development

• Final testing is to check that it works correctly

387 Evo - Keio-SDM - Oct 2010

Testing is checking correctness

Process Check

Act

1. How can we prevent this ever happening again?

2. Why did our earliest sieve not catch this defect?

1 2

388 Evo - Keio-SDM - Oct 2010

Let’s move

Let’s move from

 Fixation to Fix

to

 Attention to Prevention

• If we don’t deal with the root, we will keep making the
same mistakes over and over

• Toyota Production system: “Stop the Line”

• Without feedback, we won’t even know

• With quick feedback, we can put the repetition to a halt

389 Evo - Keio-SDM - Oct 2010

The essential ingredient: the PDCA Cycle
 (Shewhart Cycle - Deming Cycle - Plan-Do-Study-Act Cycle - Kaizen)

Plan
· What to achieve
· How to achieve it

Do
Carry out the Plan

Check
· Is the Result

according to Plan?
· Is the way we achieved

the Result according to Plan?

Act
· What are we going

to do differently?
· We are going to

do it differently!

Plan
· What to achieve
· How to achieve it

Do
Carry out the Plan

Check
· Is the Result

according to Plan?
· Is the way we achieved

the Result according to Plan?

Act
· What are we going

to do differently?
· We are going to

do it differently!

Plan
· What to achieve
· How to achieve it

Do
Do something

Check
· Is the Result

according to Plan?
· Is the way we achieved

the Result according to Plan?

Act
· What are we going

to do differently?
· We are going to

do it differently!

Pl

In
tu

iti
ve

cy
cle

Plan
· What to achieve
· How to achieve it

Do
Carry out the Plan

Check
· Is the Result

according to Plan?
· Is the way we achieved

the Result according to Plan?

Act
· What are we going

to do differently?
· We are going to

do it differently!

Plan
· What to achieve
· How to achieve it

Do
Carry out the Plan

Check
· Is the Result

according to Plan?
· Is the way we achieved

the Result according to Plan?

Act
· What are we going

to do differently?
· We are going to

do it differently!

Plan
· What to achieve
· How to achieve it

Do
Carry out the Plan

Check
· Is the Result

according to Plan?
· Is the way we achieved

the Result according to Plan?

Act
· What are we going

to do differently?
· We are going to

do it differently!

Plan
· What to achieve
· How to achieve it

Do
Carry out the Plan

Check
· Is the Result

according to Plan?
· Is the way we achieved

the Result according to Plan?

Act
· What are we going

to do differently?
· We are going to

do it differently!

390 Evo - Keio-SDM - Oct 2010

Developers are continuously optimizing

• The product
how to arrive at the most effective product (goal !)

• The project
how to arrive at the most effective product effectively and
efficiently

• The process
• Finding ways to do better

• Learning from other methods

• Absorbing those methods that work better

• Shelving those methods that currently work less

391 Evo - Keio-SDM - Oct 2010

Testers are continuously optimizing

• The product
how to arrive at the most effective product (goal !)

• The project
how to arrive at the most effective product effectively and
efficiently

• The process
• Finding ways to do better

• Learning from other methods

• Absorbing those methods that work better

• Shelving those methods that currently work less

392 Evo - Keio-SDM - Oct 2010

Evo Testing

• Final validation shouldn’t find any problems

• Earlier verifications mirror quality level to developers:
how far from goal and what still to learn

• Evo has no debugging phase !

• Checking is done in parallel with development

• Checking doesn’t delay the project

measure
quality

measure
quality

measure
quality

measure
quality

measure
quality

final
validation

delivery delivery delivery delivery delivery

zero
defect
delivery

how far are we from the goal of zero defect delivery?

evolutionary project track

393 Evo - Keio-SDM - Oct 2010

Further Improvement

• Tester’s customer is “the developers”

• Finding defects is not the goal

• Project Success is

• Testers select and use any method appropriate

• Testers check work in progress even before it is finished

• Testing is organized the Evo way, entangling intimately
with the development process

394 Evo - Keio-SDM - Oct 2010

Evo cycles
for Testing

• Testers organize their work in weekly TaskCycles

• DeliveryCycle is the Test-Feedback cycle

• Testers use their own TimeLine, synchronized with the
developers TimeLine

• Testers conclude their work in sync with developers

• Testers know what they are supposed to test

• Testers check work in progress even before it is finished

deliverytaskstasks

test test

taskstasks deliverytasks

395 Evo - Keio-SDM - Oct 2010

Testing Metrics

Don’t improve non-value-adding activities
- better eliminate them

• Defects per Page, Defects per …
Stop counting defects, it conveys a bad message. Prevent defects

• Incoming defects per month (by test, by user)

Don’t count. Do something. Users shouldn’t experience problems

• Defect detection effectiveness or Inspection yield
• Yield is 30% ~ 80%; testers are human after all

• Zero defects at user means zero defects before final test

• Whether that is difficult is beside the point

396 Evo - Keio-SDM - Oct 2010

More Testing Metrics

• Cost to find and fix a defect
• The less defects the higher the cost per defect

• This was a bad metric anyway

• Closed defects per month
• Closing depends on prioritizing process,

through Candidate Tasks List

• Age of open customer found defects
• Purpose of many metrics seems to be policing:

not trusting people to take appropriate action

• In Evo we take appropriate action

• Remaining defects
• Still useful as measure of Prevention success

397 Evo - Keio-SDM - Oct 2010

When are we done with testing?

• Conventional:
• Number of defects found per day less than n

• Defect backlog decreased to zero

• Prediction by curve fitting based on early found defect numbers

• Using historical data

• Other?

• Evo:
• The project is ready at the agreed date, or earlier

• That includes testing

e

398 Evo - Keio-SDM - Oct 2010

Defects typically overlooked

• Functions that won’t be used (superfluous requirements)

• Why to repair defects in the implementation of these requirements?
• The only defect is that it has been implemented

• Nice things (not checked, not paid for)

Shouldn’t be there in the first place

• Missing quality levels (should have been in requirements)

Checking the implementation of the documented requirements won’t help

• Missing constraints (should have been in requirements)

Product could be illegal

• Unnecessary constraints (not required)

What would testing say about these?

399 Evo - Keio-SDM - Oct 2010

Remember the W-model
but also remember: all models are wrong …

400 Evo - Keio-SDM - Oct 2010

Ways to achieve better quality ?

• Hope ??

• Test ?

• Debug ??

• Review ?

• Walkthrough ?

• Inspection ?

Prevention !!

401 Evo - Keio-SDM - Oct 2010

CR/PR/RI Database

• Change Requests
CR: customer pays

• Problem Reports
PR: you pay

• Risk Issues
RI: prevention

• Where, what, when, who

• Urgency, severity

• Classification

• Status

• Where caused and root cause

• Where should it have been
found earlier

• Why not found earlier

• Prevention plan

• Analysis tasks defined and put
on Candidate Task List

• Prevention tasks defined and
put on Candidate Task List

• Check lists updated for finding
issues easier, in case
prevention doesn’t work yet Focus on

“Repair”

Focus on
Prevention

402 Evo - Keio-SDM - Oct 2010

Anything we think must be done goes through the
Candidate Task Mechanism

requirements
derived

tasks
newly defined

tasks
risk

issues
problem
reports

database

CCB

· reject
· later
· new task
· analysis task

candidate tasks hours priority

task 1 4 5

task 2 6 5

task 3 3 5

task 4 7 4

4

3

3

task m 45 2

2

1

0

task n 23 0
hours: real effort
priority: 5 = highest, 1 = lowest, 0 = on hold
don’t detail lower priority tasks too much

change
requests

Activity Estimate Real
Act1 Ae1 Ar1
Act2 Ae2 Ar2
Act3 Ae3 Ar3
Act4 Ae4 Ar4
Act5 Ae5 Ar5
Act6 Ae6 Ar6
Act7 Ae7 Ar7
Act8 Ae8 Ar8
Act9 Ae9 Ar9
Act10 Ae10 Ar10
Act11 Ae11
Act12 Ae12
Act13 Ae13
Act14 Ae14
Act15 Ae15
Act16 Ae16
Act17 Ae17
Act18 Ae18
Act19 Ae19
Act20 Ae20
Act21 Ae21

Act… Ae…

403 Evo - Keio-SDM - Oct 2010

Reviews
&
Inspections

404 Evo - Keio-SDM - Oct 2010

Are you reviewing?

*

405 Evo - Keio-SDM - Oct 2010

Many types of Review to choose from

• Informal Review

• Pair Programming

• Technical Review

• Walkthrough

• Formal Inspection (Fagan type)

• Cleanroom Inspection

• Formal Inspection (Gilb/Graham type)

• Agile/Extreme/Lean/Early Inspection

• Gate Review

• Unit Test

• Debugging

• Test

406 Evo - Keio-SDM - Oct 2010

Techniques

• Can you look at this ?

• Over the shoulder

• Pair Programming

• E-mail

• Tool

• On Screen

• Projector

• On Paper

• Formal process

407 Evo - Keio-SDM - Oct 2010

Formal Reviews (vs Ad-Hoc)

• Defined, repeatable process

• Measures effectiveness

• Continuous improvement

• Rules/checklists

• Feeds prevention process

408 Evo - Keio-SDM - Oct 2010

Typical documents

• Wish specification Thank you, nice input

• Business Case Why are we doing it

• Requirements What the project agrees to satisfy

• DesignLog Selecting the ‘optimum’ compromise and how

 we arrived at this decision

• Specification This is how we are going to implement it

• Implementation Code, schematics, plans, procedures,

 hardware, documentation, training

• Process Log Describing how and why we arrived at which

 current practices

409 Evo - Keio-SDM - Oct 2010

DesignLog (project level)

• In computer, not loose notes, not in e-mails, not handwritten
• Text
• Drawings!
• On subject order
• Initially free-format
• For all to see

• All concepts contemplated
• Requirement
• Assumptions
• Questions
• Available techniques
• Calculations
• Choices + reasoning:

• If rejected: why?
• If chosen: why?

• Rejected choices

• Final (current) choices

• Implementation

Chapter
Requirement  What to achieve
.
Assumptions
Questions + Answers
.
.
.
.
Design options
Decision criteria
Decision  implementation spec

New date: change of idea:
Design options
Decision criteria
Decision  implementation spec

410 Evo - Keio-SDM - Oct 2010

Did you ever do a Review ?

*

411 Evo - Keio-SDM - Oct 2010

Let’s review

• Do we have a document ?

• Select one representative page

• Make some copies

• Review

• Then we’ll discuss the result of the review

412 Evo - Keio-SDM - Oct 2010

Simple Rule for Reviews

“We don’t review unless there is a source document”

Business case

Requirements Design Implement

source source source

Wish spec

source

413 Evo - Keio-SDM - Oct 2010

Now review again

• Any difference ?

414 Evo - Keio-SDM - Oct 2010

Document generation

source
documents generate

document

standards

rules
1. do this
2. do that
3. think about this
4. don’t forget that

source
documents source

documents

standards
standards

review

kin
documents

digest

415 Evo - Keio-SDM - Oct 2010

Rules

• Any workproduct will be reviewed against
• Itself

• Kin documents

• Source documents
If we don’t have the source, how can we judge the workproduct?

• We always update the source document first before
changing the workproduct(s)
• First change the Design, then the Code and the Test

• First change the Requirement, then the Design, then the Code
and the Test

Business case

Requirements Design Implement

source sourcesource

Wish spec

source

Business case

Requirements Design Implement

source sourcesource

Wish spec

source

416 Evo - Keio-SDM - Oct 2010

A typical Review ...

• The document to be reviewed is given out in advance

• Typically dozens of pages to review

• Instructions are "please review this"

• Some people have time to look through it

• Review meeting often lasts for hours

• Typical comment: "I don't like this"

• Much discussion, some about technical approaches, some about trivia

• Don't really know if it was worthwhile, but we keep doing it

• Next document reviewed will be no better

DG

417 Evo - Keio-SDM - Oct 2010

Inspection is different

• The document to be reviewed is given out in advance

• Typically dozens of pages to review

• Instructions are "please review this"

• Some people have time to look through it

• Review meeting often lasts for hours

• Typical comment: "I don't like this"

• Much discussion, some about technical approaches, some about trivia

• Don't really know if it was worthwhile, but we keep doing it

• Next document reviewed will be no better

chunk or sample

training, roles

entry criteria to meeting, may be not worth holding

Best Practice rules - Rules are objective, not subjective

no discussion, highly focused, anti-trivia

exit criteria - continually measure costs and benefits

not just product - rules to define defects, other docs to check against

2 hr max

most important focus is improvement in processes and skills

DG

418 Evo - Keio-SDM - Oct 2010

Inspection

• Most rigorous form of review

• Pioneered by Fagan (IBM) (paper 1976)
• Locating all the defects in a work product

• Inspection economics: Gilb/Graham (Software Inspection, 1993)
• Quantifying the defect density of a work product and preventing poor

quality work from moving downstream

• Is not the same as review

• Use:
• Walkthroughs for training
• Technical Reviews for consensus
• Inspections to improve the quality of the document and its process
• Gate Reviews to decide what to do with it

Would you like to base further work or decisions

on a document of unknown quality?

419 Evo - Keio-SDM - Oct 2010

A ready to use recipe …

420 Evo - Keio-SDM - Oct 2010

16 page
Inspection Manual

www.malotaux.nl/nrm/pdf/InspManual.pdf

http://www.malotaux.nl/nrm/pdf/InspManual.pdf

421 Evo - Keio-SDM - Oct 2010

Basic Simple Requirements Inspection

• Use these Rules:
1. Unambiguous to the intended readership

2. Clear to test

3. No Design

• A Defect is a violation of a Rule

• Check for Major Defects
• Major means > 10 hours cost to find and repair if found later

• Take one page

• How many Majors did you find on this page?

422 Evo - Keio-SDM - Oct 2010

Inspection goals and effects

• Identify and correct major defects

• Most important:
Identify and remove the source of defects

• Consequence:
Education and interaction:
How should we generate documents in the first place?

• Interesting side-effect:
People get to know each others documents efficiently

423 Evo - Keio-SDM - Oct 2010

Defect classes

• Major defect
• Defect probably has significantly increased costs to find and fix

later (test, field)
• 10 engineering hours lost extra

• Average time in work-hours to find, log and fix a major defect by
Inspection is 1 hour (observed by many sources)

• Minor defect
• Not major (no significant impact on result)

• Super-major/critical
• Order of magnitude more costly than major

• Project threat

424 Evo - Keio-SDM - Oct 2010

Cost of Repair ref SI, fig 14.6, p315

10 20 30 40 50 60 70 80 0

50

100

150

250

200

N
u

m
b

e
r

o
f

d
e

fe
ct

s

Estimated time to correct in hours

Mean time to correct Major if
not found at Inspection = 9.3 hrs

425 Evo - Keio-SDM - Oct 2010

Rules

• Rules are the law for documents

• Defect = Rule violation
not: “I think this is wrong”

• Rule:
All quality requirements must be expressed quantitatively

• Typical requirements found:
The system should be extremely user-friendly

 The system must work exactly as the predecessor

 The system must be better than before

426 Evo - Keio-SDM - Oct 2010

Generic Specification Rules (see Inspection Manual)

GE0 (def) Generic engineering specification rules apply to all engineering documents as required best
practices

GE1 (relevant) All statements should be relevant to the subject

GE2 (complete) There should not be any significant omissions

GE3 (consistent) Statements should be consistent with other statements in the same or related documents

GE4 (unambiguous) All specifications should be unambiguous to the intended readership

GE5 (note) Comments, notes, suggestions, not official part of document shall be clearly marked
(“”, ital, /**/)

GE6 (brief) All specifications shall be as brief as possible, to support their purpose, for the intended
readership

GE7 (clarity) All specifications shall result in clarity to the intended readership regarding it’s purpose or
intent (the burden is on author, not the reader)

 Note: It is not enough that statements are unambiguous. They must contain clarity of purpose:
why is it there?

GE8 (elementary) Statements shall be broken into their most elementary form
Note: This is so that they each can be cross-referenced externally (Traceability)

GE9 (unique) Specifications shall have a single instance in the entire project documentation

GE10 (source) Statements shall have source info (spec  source)

GE11 (risk) The author should clearly indicate any information which is uncertain or poses any risk to the
project, using indications like: {<vaguely defined>, ?, ??, 70% ±20, suitable comments or notes}

GE12 (verifiable) All statements should be verifiable

GE13 (true) The statement is simply not true

427 Evo - Keio-SDM - Oct 2010

Check Lists

• Checklists contain interpretations of Rules to help
reviewers to find more issues

• Rules are “The Law” 法律 (?)

• Checklists provide “Jurisprudence” 法学 (?)

428 Evo - Keio-SDM - Oct 2010

Gilb/Graham
Inspection

Process

Plan

Process
Improvem

Proposal

Change

Req

Kick

off
Check Log

Edit +

Follow-

up E
n

tr
y

E
x

it
 Product

doc

Product

doc

Source

docs

Kin

docs

Inspection

Data

Colletion

Rules

429 Evo - Keio-SDM - Oct 2010

source docs
rules

standards

entry
criteria

individual
checklist

spelling/
syntax
check

inspection
checklists

gate
criteria

rejected
work
product

rejected
project

process
improvement

proposals
(rules/

standards/
checklists/

criteria)

Entry Kick-off Checking Logging
Brain-

storming
Edit

Follow
up

Exit

checked
work

product

inspected
work

product

PIPs from
other phases

Inspection process

Development project sub-process

Entry Activity GateInspectCheck
work

product

checked
work

product

inspected
work

product

accepted
work

product

start
ok

defects from
other phases

estimates

time
defects

time
size

time
defects

time
defects

causes/
improvement

ideas

timetime time time

© 2000 N R Malotaux - Consultancy file: http://www.malotaux.nl/nrm/pdf/subprocess.pdf

430 Evo - Keio-SDM - Oct 2010

Inspection
Process
Steps

Entry

Planning

Kickoff

Checking

Logging

Brainstorm

Edit

Follow-up

Exit

?

Overview

Preparation

Inspection

Rework

Follow-up

Gilb/Graham Fagan


 








 
 



 

431 Evo - Keio-SDM - Oct 2010

Gilb/Graham Concepts
Entry and Exit Criteria

Once the quality level of a specification is known, there are
three possible paths forward:

D
e

fe
ct

 D
e

n
si

ty

Meets exit criteria: Success! Exit

Somewhat above exit criteria: Rework or
enlarge inspection sample

Well above exit criteria: Process failure!
Recreate after training or process
improvement

ES

432 Evo - Keio-SDM - Oct 2010

Optimum Checking Rate

• The most effective individual speed for ‘checking a
document against all related documents’ in page/hr

• Not ‘reading’ speed, but rather correlation speed

• Failure to use it, gives ‘bad estimate’ for ‘Remaining
defects’

• 100~250 SLoC per hour

• 1 page of 300 words per hour (“logical page”)

TG

433 Evo - Keio-SDM - Oct 2010

Optimum checking rate

Here’s a document: review this (or Inspect it)

Ref. Dorothy Graham

DG

434 Evo - Keio-SDM - Oct 2010

Review “Thoroughness”?

• Ordinary review
• Find some defects, one Major

• Fix them

• Consider the document now corrected and OK ...

major
minor

minor

Ref. Dorothy Graham

DG

435 Evo - Keio-SDM - Oct 2010

Inspection Thoroughness

• Inspection can find deep-seated defects

• All of that type can be corrected

• Needs optimum checking rate

• In the above case we are clearly taking a sample

• In the “shallow” case we we’re also taking a sample,
however, we didn’t realize it !

Ref. Dorothy Graham

DG

436 Evo - Keio-SDM - Oct 2010

Gilb/Graham Inspection

Gilb/Graham inspection differs from other types of inspection in
some or all of these ways:
• Purpose:

Quantifying quality, not searching for all defects

• Controlled reading rate:
The material being inspected is read very slowly in order to identify as many
defects as possible (deep vs shallow sample)

• Sampling:
Only samples are inspected to optimize time and effort investment while
maintaining the reading rate

• Entry/Exit Criteria:
Quantified entry and exit criteria used to guide the inspection effort

• Rules:
Written rule sets used to locate and classify defects

ES

437 Evo - Keio-SDM - Oct 2010

Gilb/Graham Concepts
Reading Rate

• Default recommended reading rate is one logical page per
hour, lower than in many other inspection methods

• This ensures adequate time to locate the vast majority of
latent defects in the specification

• Supporting documents, rules, etc. can be read at any
speed

Read too fast and you will miss
most of the defects! Reading Rate (words/hour)

%
 D

e
fe

ct
s

 F
o

u
n

d

ES

438 Evo - Keio-SDM - Oct 2010

Early Inspection
Prevention costs less than Repair

Completeness

0%
(Rev 0.1)

100%
(Rev 1.0)

Initial
Review

Additional Reviews
(Author’s Discretion)

Specification
Quality

Assessment

…

50%

ES

439 Evo - Keio-SDM - Oct 2010

Initial Review

Purpose: Locating mistakes and tendencies that could lead to injecting
major defects if not corrected

When: As soon as the author has completed a small representative
portion of the specification, typically a few pages or 600-1200
words (e.g. few requirements)

Who: Individual or small team (1 or 2)
• Expertise in the subject matter
• Expertise in generic principles (such as requirements engineering,

design, specific language)

What: Detailed review of the specification against rules and
checklists for known error conditions and dangerous
tendencies; formal inspection may be used

Duration: Because the sample is small, the initial review takes only 1-2 hr

ES

The earlier it’s reviewed, the more defects we can prevent

440 Evo - Keio-SDM - Oct 2010

Initial Review Checklist

 Use a small team of experienced reviewers

 Schedule the review to minimize author waiting time

 Focus on issues that are or will cause major defects

 Avoid elements of style

 Be constructive at all times

 Focus on the work product, and never on the author

 Maintain confidentiality!
The review is for the author’s benefit

Reviewers: Your job is to make the author look like a hero

ES

441 Evo - Keio-SDM - Oct 2010

Case Study 1 - Situation

• Large e-business integrated application with 8
requirements authors, varying experience and skill
• Each sent the first 8-10 requirements of estimated

100 requirements per author (table format,
about 2 requirements per page including all data)

• Initial reviews completed within a few hours of submission

• Authors integrated the suggestions and corrections, then
continued to work

• Some authors chose additional reviews; others did not

• Inspection performed on document to assess
final quality level

ES

442 Evo - Keio-SDM - Oct 2010

Case Study 1 - Results

• Time investment: 26 hr
• 12 hours in initial review (1.5 hrs per author)

• About 8 hours in additional reviews

• 6 hours in final inspection (2 hrs, 2 checkers, plus prep and debrief)

• Major defects prevented: 5 per requirement in ~750 total

• Saved 5 x 750 x 10 hr = 37500 hr / 3 = 12500 x $50 = $625000

Average major defects per requirement in initial review 8

Average major defects per requirement in completed
document

3

ES

443 Evo - Keio-SDM - Oct 2010

Why Early Inspection Works

• Many defects are repetitive and can be prevented
• Early review allows an author to get independent feedback on

individual tendencies and errors

• By applying early learning to the rest (~90%) of the writing process,
many defects are prevented before they occur

• Reducing rework in both the document under review and all
downstream derivative work products

ES

444 Evo - Keio-SDM - Oct 2010

Case Study 2 - Situation

• A tester’s improvement writing successive test plans:
• Early Inspection used on an existing project to improve

test plan quality

• Test plan nearly “complete”, so simulated Early Inspection

• First round, inspected 6 randomly-selected test cases

• Author notes systematic defects in the results, reworks the
document accordingly (~32 hrs.)

• Second round, inspected 6 more test cases; quality vastly improved

• Test plan exits the process and goes into production

• The author goes on to write another test plan on the next project…

ES

445 Evo - Keio-SDM - Oct 2010

Case Study 2 - Results

• Time investment: 2 hours in initial review, 36 hours total
in inspection, excluding rework (2 inspections, 4 hrs each,
4 checkers, plus preparation and debrief)

• Historically about 25% of all defects found by testing, were
closed as “functions as designed”, still 2-4 hrs spent on each

• This test plan yielded over 1100 software defects with only
1 defect (0.1 %) closed as “functions as designed”

• Time saved on the project: 500 - 1000 hrs (25% x 1100 x 2-4 hrs)

Defect Prevention in action: First inspection of this tester’s
next test plan: 0.2 major defects per test case

First round inspection 6 major defects per test case

Second round 0.5 major defects per test case

ES

446 Evo - Keio-SDM - Oct 2010

Early Detection vs. Prevention

Denise Leigh (Sema group, UK), British Computer Society address, 1992:

An eight-work-year development, delivered in five increments
over nine months for Sema Group (UK), found:

• 3512 defects through inspection

• 90 through testing

• and 35 (including enhancement requests) through product field use

After two evolutionary deliveries, unit testing of programs was
discontinued because it was no longer cost-effective

Nice job! Early detection has big benefits - BUT…

How many of the 3512 defects found in end-of-line inspections could
have been completely prevented by Early Inspection?

Cost-effective defect prevention is the bottom line

ES

447 Evo - Keio-SDM - Oct 2010

Cleanroom Software Development

• Design (Mathematical proof)

• Verification (by others)

• Implementation

• Verification (by others)

• No unit test

• Only Integration Test (by others)

(Test is Running Code)

• Verification is for finding defects

• Testing is for not finding defects

448 Evo - Keio-SDM - Oct 2010

Cleanroom (ref Allan M. Stavely: Toward Zero Defect Programming)

• The purpose of Inspection is to eliminate defects

• Exit criterion for design:
• One design statement materializes as 3 to 10 code statements

• Checklists of typical errors we make

• No Unit Test - Developer does not run software !

• Testing:
• Finding as many of the remaining defects as possible

• Too many errors discovered
 previous steps are not being done properly
 redo previous steps (do not “repair”)

449 Evo - Keio-SDM - Oct 2010

Testing in Cleanroom

• Testing is an important part of the process, but it is done only after
verification is successfully completed

• Testing is done:
• Primarily to measure quality
• Secondarily to find defects that escaped detection during verification

• Number of bugs per thousand lines of code <10 after verification,
compilation and syntax checking

• Very good teams produce 2.3 bugs per kLoC and reject code with 4 or 5
bugs per kLoC

• No attempt is done to try to salvage rejected code by debugging
• The code is sent back to the developers to be rewritten and reverified
• Then it is tested as a completely new product

• Usage based testing

• Risk based testing

Statistical testing

450 Evo - Keio-SDM - Oct 2010

Rules for Code

451 Evo - Keio-SDM - Oct 2010

Tick the Code Rule Set (Miska Hiltunen, 2007)

Extra baggage rules
DEAD Avoid unreachable code

DRY A comment must not repeat code

INTENT A comment must either describe the intent of
 the code or summarize it

ONE Each line shall contain at most one statement

UNIQUE Code fragments must be unique

MH

452 Evo - Keio-SDM - Oct 2010

Tick the Code Rule Set (Miska Hiltunen, 2007)

Missing info rules
DEFAULT A ‘switch’ must always have a ‘default’ clause

ELSE An ‘if’ always has an ‘else’

MAGIC Do not hardcode values

PTHESES Parenthesize amply

TAG Forbidden: marker comments

ACCESS Variables must have access routines

HIDE Direct access to global and member variables is
 forbidden

MH

453 Evo - Keio-SDM - Oct 2010

Tick the Code Rule Set (Miska Hiltunen, 2007)

Chaos-inducers
CALL Call subroutines where feasible

NAME Bad names make code bad

RETURN Each routine shall contain exactly one ‘return’

SIMPLE Code must be simple

FAR Keep related actions together

DEEP Avoid deep nesting

FOCUS A routine shall do one and only one thing

MH

454 Evo - Keio-SDM - Oct 2010

Tick the Code Rule Set (Miska Hiltunen, 2007)

Risky assumptions
CHECK-IN Each routine shall check its input data

NEVERNULL Never access a ‘NULL’ pointer or reference

NULL Set freed or invalid pointers to ‘NULL’

CONST 1ST Put constants on the left side in comparisons

ZERO Never divide by zero

PLOCAL Never return a reference or pointer to local data

ARRAY Array accesses shall be within the array

VERIFY Setter must check the value for validity

MH

455 Evo - Keio-SDM - Oct 2010

Tick the Code Speed (Miska Hiltunen, 2007)

• Average number of ticks found per hour per rule

• Software developers could find this many violations in
one hour in the code they produce

• 144 developers checked for 108h to create the data

MH

456 Evo - Keio-SDM - Oct 2010

Draft Rule Set for Java (Sybren Stüvel, 2007)

SIMPLE Code should be as simple as possible, but not simpler

DOCUMENT Documentation should be such that a developer
 who's unfamiliar with the code can still understand
 the reasoning behind it

CORRECT Naming and documentation must be correct

CONDITIONAL Core functionality of a method should be outside any
CORE conditional block

EARLY Return as soon as you can from a method. Assigning to
RETURN a temporary variable and returning that variable
 usually results in overly complex code

EXCEPTIONS Use exceptions to signal an error condition
 Don't return null to signify an error

457 Evo - Keio-SDM - Oct 2010

Draft Rule Set for Java (Sybren Stüvel, 2007)

REUSE Use common library functions where applicable
 At least take a look at StringUtils and ListUtils (Spring
 framework) and ArrayUtils (Apache Commons)
 Use XStream for parsing and generating XML

EQUALS To compare objects use their equals method

MAGIC Define constants in one place, and use them

REFER Use @see and @link in Javadoc to refer readers to
 relevant other locations

READABLE Ensure the code is easily readable

SENSIBLE Test values should be sensible
TEST VALUES

EARLY JAVADOC Write a method's JavaDoc before writing
 actual code. This gives a method its scope

REVIEW TESTS Start by reviewing the unit tests

458 Evo - Keio-SDM - Oct 2010

MISRA C

• MISRA: Motor Industry Software Reliability Association

• MISRA C (1998) has 127 rules

• Providing a set of guidelines to restrict features in the ISO C
language of known undefined or otherwise dangerous
behaviour

• Of these, 93 are required and the remaining 34 are advisory
• Rule 104 (required): Non-constant pointers to functions shall not be used

459 Evo - Keio-SDM - Oct 2010

MISRA C

Rule 59 (required): The statement forming the body of an
"if", "else if", "else", "while", "do ... while", or "for"
statement shall always be enclosed in braces

if (x == 0)

{

y = 10;

z = 0;

}

else

y = 20;

z = 1;

460 Evo - Keio-SDM - Oct 2010

MISRA C

Rule 33 (required):
The right hand side of a
"&&" or "||" operator
shall not contain side effects

if ((x == y) || (*p++ == z))

{

/* do something */

}

if (x == y)

{

doSomething = 1;

}

else if (*p++ == z)

{

doSomething = 1;

}

if (doSomething)

{

/* do something */

}

461 Evo - Keio-SDM - Oct 2010

MISRA C Motor Industry Software Reliability Association

a[i] = ++i; happens once in every 7,000 lines in C

c == d;

if (c=d)

{

}

Put on checklist

462 Evo - Keio-SDM - Oct 2010

Cleanroom
Inspections

463 Evo - Keio-SDM - Oct 2010

Cleanroom expectations

NASA Satellite control system
• 40kLoC FORTRAN

• Testing found 4.5 defect/kLoC

• 60% of programs compiled successfully first time

IBM decision support program
• 107kLoC various languages, 50 person team

• Testing found 2.6 defect/kLoC

• 5 of 8 components: no defects found, no defects found in use

IBM tape drive controller, real time data stream control
• 86kLoC, C-code, 50 person

• Testing found 1.2 defect/kLoC

Ericsson Telecom operating system
• 350kLoC, assembler and C, 70 person, 18 months

• Testing found 1 defect/kLoC

464 Evo - Keio-SDM - Oct 2010

Cleanroom benefits

• Zero failures in field use

• Short development cycles

• Long product life

Quality is cheaper

465 Evo - Keio-SDM - Oct 2010

Cleanroom plans

Software development plan
1. Project mission plan

2. Project organization plan

3. Work product plan

4. Schedule and resource plan

5. Measurement plan

6. Reuse analysis plan

7. Risk analysis plan

8. Standards plan

9. Training plan

10. Configuration management plan

466 Evo - Keio-SDM - Oct 2010

Cleanroom specification processes

• Requirements analysis process CMM-2
• Software requirements

• Function specification process CMM-3
• Function specification

(black box, state box, clear box)

• Usage specification process CMM-2
• Usage specification

• Architecture specification process CMM-3
• Software architecture

• Increment planning process CMM-2
• Increment construction plan

467 Evo - Keio-SDM - Oct 2010

Cleanroom development processes

• Software reengineering process CMM-3
• Reengineering plan

• Reengineered software

• Increment design process CMM-2
• Increment design

• Correctness verification process CMM-3
• Increment verification reports

• Architecture specification process CMM-3
• Software architecture

468 Evo - Keio-SDM - Oct 2010

Cleanroom certification processes

• Usage modelling and test planning process
• Usage models (abuse models)

• Increment test plan

• Statistical test cases

• Statistical testing and certification process
• Executable system

• Statistical testing reports

• Increment certification reports

469 Evo - Keio-SDM - Oct 2010

Cleanroom

Allan M. Stavely:
Toward Zero Defect Programming

There are more books, but Stavely explains it very pragmatic

470 Evo - Keio-SDM - Oct 2010

Cleanroom Principles

• Incremental development
• User verifyable increments

• Team organisation
• 4~8 people

• Formal methods of specification and design
• Level of formalism varies even within project

• Intense review
• Mathematical proof of correctness

• Verifying individual control structures

• No unit test
• No testing infinite number of paths, infinite combination of data

• Statistical testing as reliability measurement
• Testing is not suitable for bug-hunting

471 Evo - Keio-SDM - Oct 2010

Cleanroom Inspections

• The purpose of Inspection is to eliminate defects

• Exit criterion for design:

• One design statement materializes as 3 to 10 code statements

• Checklists of typical errors we make

• No Unit Test - Developer does not ‘try’ software !

• Testing:

• Finding as many of the remaining defects as possible

• Too many errors discovered
 previous steps are not being done properly
 redo previous steps (do not “repair”)

472 Evo - Keio-SDM - Oct 2010

Designing

(thinking)

Implementing
(doing)

Getting stuck somewhere ?

• Getting stuck in implementation? Back to the design !

• Getting stuck in Inspection? Back to the design !

• Getting stuck in Testing? Back to the design !

• Why do we get stuck ?

• Root cause analysis !

473 Evo - Keio-SDM - Oct 2010

Statistical
Testing

474 Evo - Keio-SDM - Oct 2010

Cleanroom fundamentals

• Design principle
• Designers can and should produce systems free of defects

before testing

• Testing principle
• The purpose of testing is to measure quality

• Main development model
• Incremental (Cleanroom)/evolutionary (Gilb)/cyclic (TSP)

• Each increment is a working subset of the final product

• Stable requirements for each increment

• No eleventh hour integration

475 Evo - Keio-SDM - Oct 2010

476 Evo - Keio-SDM - Oct 2010

Philosophy behind Cleanroom

• To avoid dependence on costly defect-removal processes

• By writing code increments right the first time and

• Verifying their correctness before testing

(Linger, 1994)

477 Evo - Keio-SDM - Oct 2010

Cleanroom Software Development

• Design (Mathematical proof)

• Verification (by others)

• Implementation

• Verification (by others)

• No unit test

• Only Integration Test (by others)
(Test is Running Code)

• Verification is for finding defects

• Testing is for not finding defects

478 Evo - Keio-SDM - Oct 2010

Testing in Cleanroom

• Testing is an important part of the process, but it is done only after
verification (by Inspection) is successfully completed

• Testing is done:
• Primarily to measure quality
• Secondarily to find defects that escaped detection during verification

• Number of bugs per thousand lines of code <10 after verification,
compilation and syntax checking

• Very good teams produce 2.3 bugs per kLoC and reject code with 4 or 5
bugs per kLoC

• No attempt is done to try to salvage rejected code by debugging
• The code is sent back to the developers to be rewritten and reverified
• Then it is tested as a completely new product

• Usage based testing

• Risk based testing

Statistical testing

479 Evo - Keio-SDM - Oct 2010

No Unit Testing in Cleanroom

• We should avoid any kind of private testing, whether it is
unit testing or some other kind

• We may experiment for various reasons,
but we must resist the temptation to test our actual code

480 Evo - Keio-SDM - Oct 2010

Rules in Cleanroom

• Inspect also for attributes like: efficiency, simplicity, clarity, generality,

portability, ease of verification, maintainability, ...

• People can make suggestions for improvement of any aspect of the

program. Valuable ideas will often emerge from the teams discussions

• The goal is to produce the best program possible: a program that can

be verified with difficulty, but is more complicated than it needs to be,
is not good enough

• If substantial revision appears necessary, the review process is

stopped so that the team does not waste time verifying parts that

will be changed anyway

• Usually, after some experience, this will rarely happen

• In a later meeting, the team will reverify the parts that were changed

481 Evo - Keio-SDM - Oct 2010

Cleanroom: Slowest reviewer sets the pace

• Wrong: Does anyone consider this incorrect?
 (dreamers won’t answer)

• Better: Does everybody agree that this is correct?
 (attention is required)

• A team does not consider a verification condition proven
until the slowest person to respond
has expressed agreement

It is important to resist taking shortcuts here

482 Evo - Keio-SDM - Oct 2010

Metrics

483 Evo - Keio-SDM - Oct 2010

Useful Evo metric

Size of the smile on the customers face

• In many cases, the Evo attitude and techniques replace the
need for metrics

• I did not say always

• In Evo, we consume metrics immediately for learning,
rather than collecting them

484 Evo - Keio-SDM - Oct 2010

• G

• Q

• M

• G

• Q

• M

• C

• D

• Goal

• Question

• Metric

Why would we measure ?

• Goal

• Question

• Metric

• Consequence

• Does it help ?

485 Evo - Keio-SDM - Oct 2010

Metrics used

• Metrics for the project

• Ratio Real time used / Estimated time

• Calibration factor
Σ Realized / Σ Estimations

• Predicted date of what will be done when
Today plus Sum of Calibrated Estimations

• Ratio plannable / unplannable hours (default: 2/1)

• Available time, available budget (less is better)

• Cost of one day of delay

• Cost-Of-Doing-Nothing

• Project Cost + Lost Benefit

• Metrics for the product

• Quantified requirements (ref Planguage - Tom Gilb)

• Rate of improvement on quantified requirements (Impact Estimation)

doing nothing doing benefit

idea start done

486 Evo - Keio-SDM - Oct 2010

Metrics techniques used

• Just-enough metrics (don’t do unnecessary things)
• Maximizing Return-on-Investment and Value Delivered

• Consuming the metrics immediately
• Not putting them in Databases
• Using immediately for learning and improving
• Feeding intuition to come up with better estimations
• Preventing failure

• Time-boxing (not Feature-boxing)
• Minimizes the need for tracking

• Calibration
• Coarse metrics provide accurate predictions (Law of Large Numbers)

• Moving Sense of Urgency from the end towards now

487 Evo - Keio-SDM - Oct 2010

Estimation techniques used

• Just-enough estimation (don’t do unnecessary things)

• Maximizing Return-on-Investment and Value Delivered

• Changing from optimistic to realistic predictions
• Estimation of Tasks in the TaskCycle
• Prediction what will be done when in TimeLine

• 0th order estimations (ball-park figures)

• For decision-making in Business Case and Design

• Simple Delphi
• For estimating longer periods of time in TimeLine
• For duration of several (15 or more) elements of work

• Simpler Delphi
• Same, but for quicker insight
• Recently added by practice

• Doing something about it (if we don’t like what we see)

• Taking the consequence
• Saving time

488 Evo - Keio-SDM - Oct 2010

Management
Issues

489 Evo - Keio-SDM - Oct 2010

Managers have to learn

• Managers should be coaches

• Not police

• Managers have to learn to understand the Evo approach

490 Evo - Keio-SDM - Oct 2010

adding value input output

people
resources

management

senior
management

Simple model of Management

30%

15%

100%

491 Evo - Keio-SDM - Oct 2010

Local Loop Principle

Project Team

ManagementCoach

492 Evo - Keio-SDM - Oct 2010

Management Questions on Tasks

• Is the Project under Control?

• Show me !
• No “holes” in OK’s

• All available, plannable time planned

• TaskSheets used

• Results used

• Prompt explanation in case of discrepancies

493 Evo - Keio-SDM - Oct 2010

Introduction
Issues

494 Evo - Keio-SDM - Oct 2010

How Lean is Evo ?

• Kaizen - PDCA, preflection

• Waste - Only do the most important things,
 constantly seeking to do less, without doing
 too little. Preflection

• Value - Only produce Value, quantifying Value,
 increasing Value every Evo step

• Pull - Who’s waiting for it? Defer to last moment

• Poka Yoke - Murphy

• Etc

• Evo fills in the Lean principles with pragmatic action

• Lean  Toyota  Ford  Benjamin Franklin

495 Evo - Keio-SDM - Oct 2010

Order of Introduction

• Evo-day

• Tasks

• Deliveries

• TimeLine
• Sense of urgency

• Value delivered

• Better performance pays salaries

• Requirements engineering details

• Reviews & Inspections

496 Evo - Keio-SDM - Oct 2010

Evolutionary start pattern

• Evo day
• Explanation of the Evo approach

• Organizing the work of the coming week

• Goal: at the end of the day, people of the team know
what they are going to work on, what not, and why

• Weekly Evo day
• Execution of the 3-step procedure

497 Evo - Keio-SDM - Oct 2010

Evolutionary introduction pattern

1. Introducing Tasks  Short term view

How to organize the work

2. Introducing TimeLine  Longer term view
The design of the project

3. Introducing Deliveries  Connecting long and short
Focusing on Results

delivery

task

strategy

roadmap

project

organization

delivery

task

strategy

roadmap

project

organization

now date needed (FatalDate)

most important things bells & whistles

will be done might be done not done

498 Evo - Keio-SDM - Oct 2010

Evo workflow
goals

stakehldrs
requiremts

architec-
tures

Evo why
and how

define and
prioritize
deliveries

define and
prioritize

tasks

estimate
tasks

commit
to

tasks

select
highest
priority

tasks

accept
tasks,

discuss,
learn

do tasks

evaluate
both

result and
execution

cycle
as needed

consult
stake-

holders

start Evo way of working

results

max
one

week

use
timeline,
horizon

till ~10wk
timeline

499 Evo - Keio-SDM - Oct 2010

Cases

500 Evo - Keio-SDM - Oct 2010

Case 7: A “failure”

• Seasoned project manager: “Good idea, but...”

• No emphasis on TimeBoxing

• Didn’t try to understand Delivery and TimeLine concepts

• Many “hero’s” in the team
• I can do whatever I want. I know so much, they won’t fire me anyway

• No Sense of Urgency both in team and from management
• Management by fear

• Management asks different things every week

• Management asks impossible results

If you don’t apply Evo, Evo does not fail, the project does

501 Evo - Keio-SDM - Oct 2010

Case 9: US company

• Started with 10 people of a 40 people project (don’t over-eat)

• Carefully designed the Evolutionary Introduction of Evo

• Now the whole team is routinely working the Evo way

• Including 8 people in India

• Didn’t miss a milestone since
(Average time overrun before Evo was 20%)

• They still hardly believe this is possible

Evo works with larger and distributed projects

502 Evo - Keio-SDM - Oct 2010

Case 10: Managers

• Managers asked
“Can I use this for my own busy schedule?”
• Write down what you have to do

• Add effort hours

• List in order of priority

• Check how much time available this week

• Draw line at 2/3 of the available time

• Decide what to do and what not to do

• Manager Reports:
“This made me 40% more productive immediately!”

503 Evo - Keio-SDM - Oct 2010

Finally

504 Evo - Keio-SDM - Oct 2010

Magic words

• Focus

• Priority

• Synchronize

• Why

• Dates are sacred

• Done

• Bug, debug

• Discipline

505 Evo - Keio-SDM - Oct 2010

Magic Sentences

• Customer may never find out about our problems

• Evo metric: Size of the smile of the customer

• Delivery Commitments are always met

• People tend to do more than necessary

• Can we do less, without doing too little

• What the customer wants, he cannot afford

• Who is waiting for that?

506 Evo - Keio-SDM - Oct 2010

Why would the product need Evo ?

• We don’t know the real requirements

• They don’t know the real requirements

• Together we have to find out (stop playing macho!)

• What the customer wants he cannot afford

• Is what the customer wants what he needs?

• People tend to do more than necessary
especially if they don’t know exactly what to do

If time, money, resources are limited,
we should not overrun the budgets

507 Evo - Keio-SDM - Oct 2010

Why would the project need Evo?

• Are we effective? (producing Results)

• Are we efficient? (optimally using the available time)

• Are we actively learning from our mistakes? (PDCA)

• How do we estimate, plan and track progress?

• How do we handle interruptions?

• Did we learn from feedback per project? (project evaluation)

508 Evo - Keio-SDM - Oct 2010

When would we not need Evo

• Requirements are completely clear, nothing will change:
use waterfall (= production)

• Requirements can be easily met with the available
resources, within the available time (Still, Evo can make it faster)

• Everybody knows exactly what to do

• Customer can wait until you are ready

• Management doesn’t know what to do with the time saved

• No Sense of Urgency

Use Evo only on projects you want to succeed

509 Evo - Keio-SDM - Oct 2010

My project is different

• On every project somebody will claim:

 “Nice story, but my project is different.
It cannot be cut into very short cycles”

• On every project, it takes less than an hour (usually less
than 10 minutes) to define the first short deliveries

• This is one of the more difficult issues of Evo
We must learn to turn a switch
Coaching helps to turn the switch

510 Evo - Keio-SDM - Oct 2010

More www.malotaux.nl/Booklets
1 Evolutionary Project Management Methods (2001)

Issues to solve, and first experience with the Evo Planning approach

2 How Quality is Assured by Evolutionary Methods (2004)
After a lot more experience: rather mature Evo Planning process

3 Optimizing the Contribution of Testing to Project Success (2005)
How Testing fits in

3a Optimizing Quality Assurance for Better Results (2005)
Same as Booklet 3, but for non-software projects

4 Controlling Project Risk by Design (2006)
How the Evo approach solves Risk by Design (by process)

5 TimeLine: How to Get and Keep Control over Longer Periods of Time (2007)
Replaced by Booklet 7, except for the step-by-step TimeLine procedure

6 Human Behavior in Projects (APCOSE 2008)
Human Behavioral aspects of Projects

7 How to Achieve the Most Important Requirement (2008)
Planning of longer periods of time, what to do if you don’t have enough time

8 Help ! We have a QA Problem ! (2009)
Use of TimeLine technique: How we solved a 6 month backlog in 9 weeks

RS Measurable Value with Agile (Ryan Shriver - 2009)
Use of Evo Requirements and Prioritizing principles

www.malotaux.nl/nrm/Insp
Inspection pages

511 Evo - Keio-SDM - Oct 2010

What now ?

512 Evo - Keio-SDM - Oct 2010

Schedule October Wed 13 Thu 14 Fri 15

09:00~10:30 1:30

break 0:10

10:40~11:40 1:00

break 0:10

11:50~12:50 1:00

lunch 0:40

13:30~14:30 1:00

break 0:10

14:40~15:40 1:00

break 0:10

15:50~16:50 1:00

