

Niels Malotaux

 Niels Malotaux: Controlling Project Risk by Design 1

1 Introduction

If we do nothing, the risk that we won’t accomplish a certain thing is 100%. In order to accomplish what we want to
accomplish, we organize a project, and at the end of the project the risks are to be reduced to an acceptable level. The
level will never be zero, as, for example, a meteorite could strike our result just before delivery of the project result.
A lot of risks that plague projects have a high probability to occur: e.g. the risk that we don’t deliver the right things or
deliver late, and the underlying causes of these risks. This calls for proactively anticipating any potential problems and
organizing our project in such a way that the probability of the impact is minimized. The Evolutionary Project Manage-
ment (Evo) approach is just doing that, constantly being aware of what could go wrong and preventing it going wrong,
by design. Instead of assuming a theoretical model of how humans “should” behave, Evo studies actual
human behaviour and strives to make optimum use of how humans actually behave. Opposing what’s in our genes is a
lost battle.
In this booklet we will first investigate prevailing risk management. Then we show how Evo practices are designed to
successfully mitigate typical risks in projects. The techniques discussed are not merely theoretical ideas, but have been
tested, honed and proved by the author in the practice of more than 60 projects in various environments and cultures.
If we have mitigated most of the risks that usually plague projects by design, then we have much more time left to
handle the unexpected risks we still have to deal with.

2 The goal of a project

In order to know whether we succeed in projects, we’ll first have to define the main Goal of our efforts in
projects:

Providing the customer with what he needs, at the time he needs it,
to be satisfied, and to be more successful than he was without it …

If the customer is not satisfied, he may not want to pay for our efforts. If he is not successful, he cannot pay. If he is not
more successful than he already was, why should he invest in our work anyway? Of course we have to add that what
we do in a project is:

… constrained by what the customer can afford and what we mutually
beneficially and satisfactorily can deliver in a reasonable period of time.

Furthermore, let’s define a Defect as:

The cause of a problem experienced by the stakeholders of the system,
ultimately by the customer

If there are no defects, we’ll have achieved our goal. If there are defects, we failed. Example: the PA system used for
making announcements to the public in airports or train stations is in many cases hardly audible. Possible defects: bad
equipment, bad acoustics, bad speaker. In airplanes the announcements are regularly unclear because the speaker
speaks too quickly, not well articulated or in a nice but unintelligible dialect. Defect: insufficient education. Root cause:
insufficient management attention. Ultimate cause: insufficient management education.
Being late or over-budget is a defect, as long as it is experienced as a problem. If there is a potential defect, but none
of the stakeholders ever experiences a problem, because they never use a certain part of the system, then we don’t
call it a defect. We may ask ourselves why we built that part of the system anyway, and may call building that part a
defect, because we spent time (= money) on building parts of a system that are not providing return on investment.
Within this definition-framework, Risk is:

An event that may cause a Defect.

3 Prevailing Risk Management

Conventional Risk Management principles are quite straightforward. A common definition of Risk is:

An uncertain event that, if it occurs, has a negative effect on project success.

The measure of uncertainty is the probability that the event may occur. If the probability is 0%, it’s not a risk. If the
probability is 100%, it isn’t a risk, but an issue or problem. The aim is to proactively deal with risks before they become
problems. If we deal with 80% of the risks before they become a problem, we have a lot more time to deal with the
remaining 20%.
Some people include positive risks in the definition. In practice we see that this causes a lot of confusion, so we prefer
to use opportunity instead of positive risk, reserving risk for negative effects.

www.malotaux.eu/booklets 2

If a risk event occurs, there is a probability that it impacts our
success: if there is an earthquake in Japan, will it impact our
project in Paris? If it does impact our success, there is Cost in-
volved. The product of the Probability that the risk event oc-
curs (Pe), the Probability of the Impact hitting us (Pi) and the
Cost if we are impacted by the event (C), is called the Risk
Value (VR) (Figure 1):

CPPV ieR =

Because the Probabilities and the Cost are estimates, and of-
ten even rough guesstimates, it is better to include some
awareness of the (un)confidence of the estimates, to allow
for worst-case judgments.

Based on the Risk Value, we may decide to plan for Risk Pre-
vention, preventing the risk event to occur, and/or for Contin-
gency, to minimize the impact if the event occurs. A risk of
using this Risk Value product (Figure 2a, ref [Incose 2006], and
2b) is that a very harsh consequence, with a very small likeli-
hood to occur, may be ignored as it may be
perceived as a low risk value, while if it occurs, it had better
been treated as important. Example: if software for an emer-
gency procedure in an airplane or space shuttle is not tested,
because the value of other risks seemed more important, it
may fail in the (perceived unlikely) case that the emergency
does occur.

An example of pushing the mathematical treatment of risk too(?) far is the ta-
ble shown in Figure 3 [Rafele 2005]. The text is not well readable, but that’s
not relevant. Work packages are on the left, and risk sources are shown at the
top. In the matrix, the Risk Values are computed per work package and risk
source. At the right and bottom, the Risk Values in rows and columns are

summed, leading
to an order of pri-
ority of the risk
of a certain work
package and a
certain risk
source. It occurs
to me that this
may be nice the-
ory, but that
translating the
risks in just num-
bers, where ap-
ples and oranges
have been
added, obscures
what the risks re-
ally are all about.
We may only use
this technique to
feed the decision
makers with ad-
ditional insight
presenting them
the full table ra-
ther than just the computed Risk Values. Then they can
base their risk mitigation strategy on more than just bare
numbers.

Figure 2a: Problem: very harsh conse-
quence is treated as low risk

Figure 2b: Is this better?

Figure 1: Risk Model

Figure 3: Mathematical risk management

can be risky

 Niels Malotaux: Controlling Project Risk by Design 3

Risk Management (Figure 4) is done in cycles, Identifying, Analysing, Prioritizing,
Resolving and Monitoring risks. Risks are either avoided, reduced, passed on to
others, or accepted. I would like to add here: or controlled by design. Passing on
to others may be passing the risk to sub-contractors, who may, however, not be
capable to run the risk. If they fail, we still fail, so that’s a good solution only if the
sub-contractor is better equipped to handle the risk.
Summarizing, prevailing Risk Management is quite straightforward and
important to assist people taking the right preventive measures to proactively
deal with risks in order of importance. However, calling every event that can jeop-
ardize our project result a risk, obscures opportunities to control the
mitigation of the effects more effectively. It is more useful to call most of the risks
by their proper name. That’s what we will do in the following chapters.

4 Risks in Projects

Basic risks in projects are:

• The result of the project is not right

• It is too late

• It costs more than necessary

Although every project is unique, a lot of what we do in projects is always the
same:

• Every project is done by people. People react in certain ways, which, once rec-
ognized, are quite predictable, although this “real” human behaviour is ig-
nored in many project management approaches, where only some theoretical human behaviour is assumed.
Often, theory doesn’t really work as expected, in practice.

• Many activities are the same in every project, and can be organized
by repeatable processes.

• Only a very small part of the project is really unique, causing specific
risks.

This means that we should better call the predictable risks (known risks)
by their proper name, and control them by repeatable processes, and
only treat the few new-product related risks by a special risk
management process (Figure 5). In the following part we will show how
most project risks can be controlled by design, by proper process
rather than calling for separate risk management.

5 Evolutionary Project Management Methods (Evo)

Evolutionary Project Management is a set of methods and processes,
including a certain attitude, that allow people to routinely complete pro-
jects successfully on time, or earlier. Researching the root-causes of pro-
ject problems, the author is constantly designing and optimizing meth-
ods to overcome these problems, as well as optimizing the process of
introducing these methods into projects. Because Evolutionary is a long
word, we use the abbreviation Evo, as a label for the current set of methods. Being routinely successful
implies that we succeed in systematically controlling the risks threatening our projects.
Elements of these methods are solving the discipline problem, exploiting our intuition mechanism, continuously
balancing priorities, keeping focus, coping with differences in disciplines and cultures, adopting a Zero-Defect attitude,
and preventing any Stakeholder’s complaints. It integrates Planning, Requirements Management and Risk
Management into Result Management. The basic secret is the time-honoured Plan-Do-Check-Act- or Deming-cycle.

6 Plan-Do-Check-Act

The magic ingredient for risk mitigation and successfully running any project, or, for that matter, any
activity, is repeatedly and frequently going through the Plan-Do-Check-Act- or Deming-cycle:
(PDCA, Figure 6, Deming 1986)

• We Plan what we want to accomplish and how we think to accomplish it best.

• We Do according to the Plan.

• We Check to observe whether the result from the Do is according to the Plan. If the result is ok: what can we do
better? If the result is not ok: how can we make it better?

• We Act on our findings. Act produces a renewed strategy and the decision to follow that strategy.

Figure 5: The project process is

quite predictable. Only the products
created in the projects are different

Figure 4: Iterative

Risk Management Process

www.malotaux.eu/booklets 4

Key-ingredients are: planning before doing, doing ac-
cording to the plan, systematically checking and,
above all, acting: doing something differently. After
all, if we don’t do things differently, we shouldn’t ex-
pect a change in result, let alone an improvement of
the result.

Do is never a problem: we Do all the time. We Plan
more or less, usually less. For Check and Act we have
no time because we think we want to go to the next
Do.

Taking a closer look at what really is happening we
can see that Check is often done tacitly: we seem to
be tacitly aware what is going wrong. The real
problem is that we don’t Act: taking what we know,
and actively doing something about it.

Anytime people complain about something or somebody, when they keep saying “Yes, but... ”, they are stuck in the
Check-phase. If we say: “That’s a Check. What would be an Act: What could we do about it?” the same people prove to
be well capable of proposing ways to solve the problem. The problem is that we never ask that question and
subsequently Act.
Once people learn to actively Act on Checks, most problems will be solved almost effortlessly, because most problems
are not really difficult to solve. The real problem is not how to solve the problem, but rather deciding to do something
about it, and then actually doing it. Many people heard about PDCA, but fail to imagine the power of PDCA, until they
actually learn how to use it properly.

It may be clear that we use PDCA to control risks: as soon as we see a risk (Check), we devise a strategy to mitigate the
risk (Act). Then we Plan and conduct actions (Do), and Check whether the actions effectively and efficiently
improved the situation. If the situation improved, we try to improve even more. If not, we change the strategy again.
We always Act as necessary.
By introducing mutations in the Act-phase of PDCA rapidly and frequently, keeping what works better, and shelving
what works less, we force rapid evolution. Hence we call this approach Evolutionary, or Evo.
If we appropriately organize projects in very short Plan-Do-Check-Act cycles, constantly selecting only the most
important things to work on, we will most quickly learn what the real requirements are, and how we can most
effectively and efficiently realize these requirements. We spot problems quicker, allowing us more time to do some-
thing about them.

Is it then only positive? No negative effects to consider? That’s actually the power of Evo: Evo itself provides the very
mechanism to cope with any negative issues or risks: using PDCA, we recognize negative things, and do something
about them. The only remaining negative things are those things we don’t consider important enough to do
something about for the moment.

Some people fear that all this tuning will take a lot of extra time. Evo projects, however, prove to be significantly faster
than other projects. In only a few weeks’ time we see a 30% productivity improvement when projects start working the
Evo way (based on experience of the author after coaching hundreds of projects in the past 25 years). In Evo, we never
do things if they take more time than necessary.
Evo is not only both iterative (using multiple cycles) and incremental (we break the work into small parts), but above
all Evo is about quickly learning how to do things better, using PDCA. We systematically and proactively anticipate risks
before they occur and work to prevent them. We may not be able to prevent all the problems, but if we prevent most
of them, we have a lot more time to cope with the few problems that slip through, before they materialize as a stake-
holder problem.

Using PDCA we are constantly optimizing:

• The product: how to arrive at the best product (according to the goal).

• The project: how to arrive at this product most effectively and efficiently.

• The process: finding ways to do it even better. Learning from other methods, and absorbing those methods that
work better, shelving those methods that currently work less.

If we do this well, by definition, there is no better way.

Plan
• What to achieve
• How to achieve it

Do
Carry out the Plan

Check
• Is the Result

according to Plan?
• Is the way we achieved

the Result according to Plan?

Act
• What are we going

to do differently?
• We are going to

do it differently!

Figure 6: PDCA or Deming cycle

 Niels Malotaux: Controlling Project Risk by Design 5

7 Evo elements

All elements of Evo address typical project risks, such as

• Schedule risk: delivering at the wrong time

• Not living up to our promises because of unrealistic optimism

• Promising more than we can do

• Making more mistakes than necessary because of fatigue

• Delivering the wrong things and delivering at the wrong time, not making the
customer happy and more successful than before

• Others causing us to fail

• Gold Plating (doing more than necessary)

• Handling interrupts: Losing time on seemingly important things

• Coping with suppliers beyond our control

• Doing the wrong things for too long

• Trying to do more than we (as humans) can handle in a certain amount of time

In Evo, we use several learning cycles (Figure 7, more detail in [Malotaux 2004]):

• The weekly TaskCycle is used for organizing the work, optimizing estimation,
planning and tracking. Every week we check what the most important tasks are,
estimate the effort needed to complete these tasks completely, and commit to the
most important tasks we can complete during the week. We plan 2/3 of the available
time as plannable time, leaving 1/3 as unplannable time for all the small interrupts that
will occur anyway (email, phone calls, helping each other, …), allowing people to
succeed finishing what they committed to. We use TimeBoxing helping people to
focus on what is really necessary: doing less without doing too little. We constantly
check whether we are doing the right things in the right order to the right level of
detail. We optimize the work effectiveness and efficiency. We found that people in
projects can very quickly learn to change from optimistic estimators into realistic estimators, if we are serious about
time. Once we master realistic estimation, we can better predict the future, and we can deliver on time as agreed.
We learn to promise what we can do, and how to live up to our promises. Estimating in TimeBoxes also
relieves people from the need for tracking. All these details of the TaskCycle are designed to control schedule risk.

• The DeliveryCycle. Every two weeks or less, we deliver useful value to stakeholders: juicy bits to enthuse them to
provide feedback, intermediate results that make them already successful now, or at least we deliver something
that will provide the most important feedback momentarily possible. The DeliveryCycle is used to optimize the
requirements, and checking the assumptions. We constantly check whether we are moving to the right product
results. DeliveryCycles focus the work organized in TaskCycles. This way we control the risk of not delivering the right
results. An important question we ask ourselves when defining a Delivery: “What do we have to deliver in two
weeks, to Whom and Why?”

• In larger projects we see many more cycles developing, for example: parallel DeliveryCycles, shorter
DeliveryCycles, and additional longer DeliveryCycles, like Releases or Intermediate Deliveries.

At the organizational or enterprise level, we use:

• The Strategic Objectives Cycle. In this cycle we review the strategic objectives at the organizational/enterprise level
and check whether what we do still complies with the objectives. This cycle may take 1 to 3 months.

• The Enterprise Roadmap Cycle. In this cycle we review our roadmap and check whether our strategic objectives still
comply with what we should do in this world. This cycle may take 3 to 6 months.

Note that many people think that the cycle periods we use in Evo are too short. Some people even think that such short
cycles are impossible. This is one of the more difficult things to learn when changing to the Evo way: It always can be
done. It requires a paradigm shift that is not difficult, but doesn’t come naturally. Usually it has to be taught.
One reason for applying such “short” cycles is combating the risk of doing the wrong things for too long. The later we
find out that we are doing the wrong things, the longer the wrong things have endured, and the more we have to repair
or redo. Short cycles do not cause more work (doing the Check/Act more often), but rather cause less work (having to
repair less). Another reason for applying short cycles is that people simply cannot really oversee and
organize longer periods of time in detail. For controlling longer periods of time, we have a separate technique, called
TimeLine.

delivery

task

strategy

roadmap

project

organization

Figure 7: Evo cycles

www.malotaux.eu/booklets 6

TimeLine (Figure 8) is used
to keep control over the
total project, making sure
that at the FatalDate or at
the FatalBudget, we will
have delivered the best
possible value. We opti-
mize the order of Deliver-
ies in such a way that we
approach the product re-
sult along the shortest
path, with as little rework as possible. TimeLine is also used to dynamically adjust the order of deliveries to the available
resources. We treat FatalDates seriously, and count back when we should have started to achieve what is required.
Because the customer usually wants more than he can afford, it is important to know what we, at the
FatalDate, surely will have done, surely not have done, and what we may have done (after all, estimation is not an exact
science). Better than to tell the customer at the FatalDate that we didn’t succeed in the impossible, we rather tell him
as soon as we possibly know. Then we can together decide what to do with this knowledge. Every day we know a
potential problem earlier, we have a day more to do something about it. With TimeLine, we control the risk of being
late, delivering optimum value in the limited available time. During the project, we continuously keep using TimeLine to
predict the outcome of the project based on the ongoing development of knowledge. In Evo we don’t use the concept
of Earned Value. After all, how can we talk about Earned Value if the Requirements are evolving…? In many projects we
even see that “Earned Value” actually only is Spent Money. In Evo we rather use Value Still to Earn.

8 Requirements in Evo

Although the Requirements should be stable for best results, they aren’t. During a project, the developers learn, the
customer and the other stakeholders learn, and the market changes. So, because requirements change is a known risk,
we provoke requirements change as quickly as possible, preferably before they are implemented. Because the customer
and other stakeholders usually cannot very well express what they really need, we use several techniques to find out
what they do need, first developing the problem, before we start developing a solution.
Every project has many Stakeholders. A Stakeholder is anyone having a stake in the requirements: customer, users, and
many others, including the developers. If at the end of the project we realize that we forgot an
important Stakeholder, we are in trouble. If we find a requirement without a Stakeholder, either it isn’t a
requirement, or we haven’t identified the Stakeholder yet. If we don’t know the Stakeholder, who will pay for our work,
how would we know we are implementing the right things, and how would we know when we are ready?

Requirements are divided in:

• Functional Requirements, scoping the project. The Functional Requirements describe what we will improve in this
project. We choose this particular set of functions to improve, because a different set will yield less benefit.

• Performance Requirements defining how much the functionality will be improved. Note that all the
functions are already there. With our new product, people should, for example, be able to do what they did before
more quickly, making them more productive. The Performance Requirements are the most important requirements
and have the most impact on project time and cost. Therefore, it is imperative to pay adequate attention to these
requirements.

• Constraints defining what we are not allowed to do, e.g. for legal, environmental, or moral
reasons, or what we are not supposed to do.

Performance Requirements shall always be numerically defined, otherwise we will not be able to determine whether
we have achieved the required performance. Performance Requirements are an important driver for choosing the ap-
propriate architecture and if they are not stated early, the chosen architecture will usually prohibit achieving them later.
If the airport is opened, and the PA-System audibility turns out to be bad, it may cost a lot of acoustic redesign once we
define the Audibility-requirement e.g. as “96 of 100 people waiting for departure can reproduce the message”. If a
Performance Requirement cannot be defined numerically (is Maintainability 3 or 7?) we call it a complex concept, which
has to be decomposed into components which can be numerically defined, like e.g. “Maintainability.MTTR < 15
minutes” and “Maintainability.DownTimeDuringUpdate < 1 sec”.

now FatalDate / Budget

most important things bells & whistles

will be done might be done
won’t be

done

time / money

Figure 8: TimeLine

 Niels Malotaux: Controlling Project Risk by Design 7

9 Specifying Requirements

For specifying performance
requirements, we use Planguage,
as proposed by [Gilb 2005]. In the
example in Figure 9, we show
some basic elements of this
method. To be able to specify nu-
merical values of the performance
requirement, we need a Scale. The
Meter defines how we measure
the values on the scale.
Benchmarks define the playing
field. Some examples are:

• Past: The value in our previous
product. We won’t have im-
proved if our new product has
the same specification.

• Current: The current state of the art. If we don’t achieve this level, we won’t beat the competition, which would
constitute a risk.

• Record: This is a level that will be hard to beat (like an Olympic record). It probably will cost a lot to achieve this.
Could very well be much more than our customer can or is willing to afford.

• Wish: This is a possible future requirement. We are not planning to achieve this level now. It may be too costly to
achieve with the current state of the art, but it is what we actually would like, once feasible. The customer is not
prepared to pay for this in the current project.

Then we describe the Requirements, with at least a Must and a Goal value:

• Must: If we do not achieve
this level, the project fails.

• Goal: This is the level we
expect to achieve in this
project. When we have
achieved it, we are done.

The power of generating re-
quirements in this fashion is
that it stimulates greatly the
communication and under-
standing of the requirements
and we often see that per-
ceived initial requirements
quickly change into other,
more appropriate require-
ments, reducing the risk that
we start working on
implementing the wrong re-
quirements. During develop-
ment the architecture and de-
sign tries to cover the set of
usually conflicting require-
ments as best as possible. Hav-
ing a range between Must and
Goal, leaves room for intelli-
gent compromises.
Engineers are trained to
achieve planned results by de-
sign (Figure 10). Sometimes,
however, we reach a goal by
improving different parts of
the system, one step at the

Figure 11: Sometimes we reach the goal by improving different parts of the system,
one step at the time

Req 1

Past Must Goal WishRecord

Req 1Req 1

Past MustMust GoalGoal WishWishRecordRecord

11 22 33

Figure 12: In practice, we have to satisfy many requirements
simultaneously

Req 2

Req 3

Past

Past Must

Must

Goal

Goal

Req 2Req 2

Req 3Req 3

Past

Past MustMust

MustMust

GoalGoal

GoalGoal

Req 1

Past Must Goal WishRecord

Req 1Req 1

Past MustMust GoalGoal WishWishRecordRecord

11

22

44

55

66

77

33

Figure 10: Engineering is achieving a goal by design

Req 1

Past Must Goal WishRecord

Req 1Req 1

Past MustMust GoalGoal WishWishRecordRecord

By designBy design

RQ27: Maximum Response Time
Scale: Seconds between <asking> for information and <appearance> of it.
Meter: Add a function to the software to measure the maximum response time value

and the range of values per <working day>.

Benchmarks:

Past: 3 sec (our previous product)

Current: 0.6 sec [competitor y, product x, 2006]  Marketing Survey, Jan 2006
Record: 0.2 sec [competitor x, product y]

Wish: 0.2 sec [2008]  customer's head of R&D, 19 Feb 2005, <document ...>

Note: Less than 0.2 sec is not noticed by the user, so there is no use in trying
to be better than 0.2 sec

Requirements:

Must: 1 sec [99%]  project-contract

Must: 1.5 sec [100%]  project-contract

Goal: 0.5 sec  project-contract

Figure 9: Using Planguage to specify Performance Requirements

www.malotaux.eu/booklets 8

time. Many developers are used to trying to accomplish as much as possible in one step. In Evo, we always select the
smallest step possible. If this step later turns out not to be the right step, we have to redo as little as
possible. And the step that takes the least time leaves us the most time for whatever we still have to do.
Figure 11 shows how we are safe after one delivery step (better than Must: at least we don’t fail). After two more
deliveries we reach the Goal value, indicating that we have achieved our goal and that we don’t gain anything if we
continue. Hence we stop. This way, we mitigate the risk of Gold Plating, which is doing more than necessary.
In real projects, we have to cope with many requirements at the same time. In one Evolutionary Delivery step, we work
on Requirement 1 (Figure 12: step 1), getting past the Must level. Therefore, in the next DeliveryCycle, we better first
work to get another requirement beyond the Must level (step 2). In some cases, an improvement of one
performance may adversely affect another performance, which we may improve in the next step (step 3). In similar
fashion we deliver step by step until all requirements are at the Goal level, or until the budget in time or money is
depleted.
In Evo we never overrun the budgets. As soon as we are beyond the “safe” Must levels for all requirements, we can
basically stop at any time, for instance if the customer decides that time-to-market is more important than further im-
provements. The Evo Requirements Engineering Approach addresses the risk of delivering the wrong things and deliv-
ering at the wrong time.

10 Active Synchronization

If we are working the Evo way, somewhere around us is the bad world, where people are not yet accustomed to living
up to their promises. Software people may need hardware to test their software. Hardware people may need test soft-
ware to test their hardware. Other disciplines may have to deliver to us, or need our results. You may be
collaborating with people at other places in the world.
If you are waiting for a result outside your span of control, there are three possible cases:

1. You are sure they’ll deliver Quality on Time (the right results at the time agreed).
2. You are not sure.
3. You are sure they’ll not deliver the right results at the time agreed.

Note:

• An Evo project behaves like case 1.

• From other Evo projects we can expect case 1.

• If we are not sure (case 2), we’d better assume case 3.

In cases 2 and 3: Don’t wait until you get stuck not receiving the agreed result on time. You know you won’t, if you don’t
Actively Synchronize, so: Do something! Go there! This has three advantages:

1. Showing up increases your priority.
2. You can resolve issues which otherwise would delay delivery.
3. If they are really late, you’ll know much earlier.

With Active Synchronization, we control the risk of others causing us to fail.

11 Interrupts

One of the potential risks of losing time is interrupts. In Evo, we only work on planned tasks, never on undefined tasks.
In case a new task (or a new requirement) suddenly appears in the middle of a Task Cycle, we call this an
Interrupt.
Assume the boss comes in and asks us to paint the fence. We don’t say Yes, but we also don’t say No. After all,
painting the fence may be more important than anything we have currently planned, if an important customer would
turn his heels when he sees the shabby fence. Instead, we follow the Interrupt Procedure:

• Define the expected Results of the new Task properly. What is the actual risk that the shabby fence causes
trouble? Should we thoroughly grind, ground and paint the fence, or buy a new fence that doesn’t need paint, or
just put a quick layer on the old fence, just covering the dirt?

• Estimate the time needed to perform the new Task, to the level of detail really needed.

• Go to the task planning tool (many Evo projects use the Evo Task Administrator tool [ETA 2004]).

• Decide which of the planned Tasks have to be sacrificed (up to the number of hours needed for the new Task).

• Weigh the priorities of the new Task against the Task(s) to be sacrificed.

• Decide which is more important.

• If the new Task is more important: replan accordingly.

• If the new Task is not more important, then do not replan, and do not work on the new Task. Of course the new
Task may be added to the Candidate Task List, to be considered later.

• Now we are still working on planned Tasks.

 Niels Malotaux: Controlling Project Risk by Design 9

But isn’t this delaying the work we originally planned? Yes, of course it is. But we deal with the consequences of the
change in the plan. We Act. We don’t let things happen randomly, we rather control how they happen. If some
requirements become more important than others, the order of what we do should change. Priorities do change all the
time, so the thing is to dynamically reprioritize as needed. Revisiting TimeLine will tell us what the consequences will
be for what will be done, what will not be done, and what may be done at the FatalDate.
We simply cannot do more than we can do. We don’t try to do the impossible. All we can do is making sure that
looking back we always can say we did the best possible job. With the Interrupt procedure, we control the risk of losing
time on seemingly important things.

12 Boehm’s 10 top software risk items

Barry Boehm described 10 software risk items [Boehm 1991], which probably still are considered risks today, also for
non-software projects. Let’s check whether and how we address these risk items the Evo way:

• Personnel Shortfalls. We have a certain number of people available in our organization. At the organizational level
(Figure 7, in grey), we compare the priorities of all the work we could do with the available resources. If a certain
project does not get the appropriate number of people needed for a certain development load, this will be only
because other projects create even more value than this project. With TimeLine the project determines what it can
do with the available resources. If this is less than needed, they inform management about the consequences. This
information is input to the organizational prioritization process. This isn’t a risk, it’s a choice.

• Unrealistic schedules and budgets. If the requirements aren’t clear (which is usually the case; be honest!), any sched-
ule will do. If the requirements change anyway, how can we talk about realistic or unrealistic schedules and budgets?
We take time and budgets as a given, and spend them delivering the best possible value. If, within the
available time and cost we can’t deliver sufficient value, we won’t even start. We constantly update the TimeLine in
order to predict what at a certain date will be done, won’t be done, and may be done, and take the
consequences. People in projects change quickly from optimistic estimators into realistic estimators and thus learn
to live up to their promises. This way, they have facts to explain management about the realism of schedules. In
such an environment, managers who keep asking for unrealistic schedules shouldn’t survive. Or, if managers insist
in unrealistic schedules (Check), either they should be educated (Act), or they want the project to fail. If they want
the project to fail, they should better tell us, because then we can do that much more efficiently.

• Developing the wrong functions and properties. The Evo requirements process deals with this issue. Frequent
stakeholder feedback is used to optimize the requirements and check the assumptions.

• Developing the wrong user interface. Same as previous. Because Evo requirements are stated in terms of
stakeholder success, which may include improvement of user productivity, the developers will make sure that the
user interface supports those requirements. We check our assumptions about the user interface with early
deliveries, and Check whether we are achieving the required performances or not. If not, we do something about it.
We Act.

• Gold-plating is suppressed because we deliver as per requirements, specified by Planguage. When we achieve Goal
values, we are done. Normally, people tend to do more than necessary, especially if it’s not clear what should be
done. Making it clearer is a big time-saver.

• Continuing stream of requirements changes. Requirements do change because we learn, they learn, and the
market changes. If we would deliver according to obsoleted requirements, we won’t secure customer success, for-
saking the goal of the project. So, we anticipate requirements changes, and have a process to deal with them. We
even provoke requirements change as soon as possible, preferably before we implemented the requirement that
had to be changed. If we are not sure about a requirement, we do as little as needed, just enough to find out what
the real requirement is, in order to redo as little as possible in case our assumptions are wrong. TimeLine is used to
guard what we will, and will not deliver at the FatalDate. We Act, if Check indicates a problem.

• Shortfalls in externally furnished components. We use Active Synchronization to stay on top of this issue. We know
that when our FatalDate has come and we didn’t deliver, there is no point in finger pointing: we simply failed! Well
before our FatalDate we should have got deliveries from the external suppliers, knowing early about any problems.
Any day we know a problem earlier, we have a day more to do something about it, while the
problem continues a day less.

• Shortfalls in externally performed tasks. Same as previous. We request regular Evo deliveries from our external
suppliers, so any potential problems will show up quickly. Note that the possibility of shortfalls influences the order
of deliveries: highest risks first. If a risk turns out for the worst at the end of the project, we are in trouble. We don’t
want to get into trouble, so we design the order of whatever we do in our project to minimize the chance for trouble,
and optimize the use of our time.

• Real-time performance shortfalls. Come on. That’s simply a Performance Requirement, and then an engineering
issue. Are we amateurs?

www.malotaux.eu/booklets 10

• Straining computer-science capabilities. In Evo, we plan to do the right things, in the right order, to the right level
of detail. We don’t start with the easy things, but rather with those things we are not yet sure of. And if we find out
that the necessary requirements cannot be met within an acceptable budget of time and cost we report this to
management and the customer, and discuss what we do with this knowledge.

Concluding: all of these so called risks are not really risks. There are adequate processes to cope with these issues in a
responsible way. Again: we aren’t amateurs, are we?

13 The biggest risk

The biggest risk is the risk that we’ll still be overlooking something:

• It’s within our span of control, but we don’t recognize it.

• It’s not within our span of control, but we didn’t anticipate, or we haven’t done enough to avoid the problem to
occur (we should have Actively Synchronized to avoid this, but missed it).

The trick is to be ahead of problems, before they occur. We don’t ostrich; we actively take our head out of the sand. If
somebody complains, we’re too late. If the FatalDay is there, excuses and finger pointing are irrelevant. If we don’t
deliver, we fail. We don’t want to fail, so we do whatever (ethical) we can to avoid failure. Why? Because we want to
achieve the best possible results in the shortest possible time. Why? Simply because that’s what we like.

14 Conclusion

A lot of so-called risks in projects aren’t really risks: we may not know when exactly, but they usually always happen. If
we devise good, practical techniques and processes to cope with these “risks”, we can minimize the impact, so that
they don’t jeopardize the successful result of our project. Evo provides these techniques and processes, continuously
acting proactively, and making sure that we are delivering the right things at the right time. If we have by design miti-
gated most of the risks that usually plague projects, then we have much more time left to handle the real risks we still
have to deal with. Evo provides the technique and the attitude to deal with the real risks as well.
We design not only what we agree to deliver, we also design the way we work to succeed in our goal. Evo seeks to
optimize this process, by constant learning to doing things better. In this process, risks are not handled separately, but
as an integral part of running a project. Evo is full of small details designed to ensure success, some examples of which
are described in this paper. The process itself being evolutionary as well, Evo constantly optimizes its own ways. Some
people fear that all this analysing, learning, and optimizing may take a lot of extra time. In practice we see that it saves
time: A project adopting these methods for the first time, generally completes successfully in 30% shorter time. Nothing
of the above is merely theoretical. It has been tested, honed and proved by the author in the practice of hundreds of
projects in various environments and cultures.

15 References and further reading

Boehm, Barry W., Software Risk Management: Principles
and Practices
IEEE Software, vol. 08, no. 1, pp. 32-41, Jan/Feb, 1991.

Deming, W.E.: Out of the Crisis, 1986. MIT, ISBN
0911379010. Walton, M: Deming Management At Work,
1990. The Berkley Publishing Group, ISBN 0399516859.

ETA: Evo Task Administrator, 2004.
Tool for administering Tasks in Evo projects.
www.malotaux.eu/?id=downloads#ETA

Gilb, Tom: Competitive Engineering, 2005
Elsevier, ISBN 0750665076.

Incose, System Engineering Handbook, Version 3
June 2006, Figure 7-6.

Malotaux, Niels: Evolutionary Project Management
Methods, 2001.
Issues and first experience, introducing Evo at a large com-
pany.
www.malotaux.eu/booklets - booklet#1

Malotaux, Niels: How Quality is Assured by Evolutionary
Methods, 2004. Practical details how to implement Evo,
based on experience in some 25 projects in 9
organizations.
www.malotaux.eu/booklets - booklet#2

Malotaux, Niels: Optimizing the Contribution of Testing to
Project Success, 2005. How to apply the Evo ideas on the
testing process to iterate more quickly towards Zero De-
fects.
www.malotaux.eu/booklets - booklet#3

Malotaux, Niels: Optimizing Quality Assurance for Better
Results, 2004. Similar to the previous, but targeted at non-
software QA.
www.malotaux.eu/booklets - booklet#3a

Rafele, Carlo, David Hillson, Sabrina Grimaldi: Understand-
ing Project Risk Exposure Using the Two-Dimensional Risk
Breakdown Matrix, 2005.
PMI Global Congress Proceedings - Edinburgh, Scotland.

If we do nothing, the risk that we won’t accomplish a certain thing is 100%. In order to accomplish what we want to
accomplish, we organize a project, and at the end of the project the risks are to be reduced to an acceptable level. The
level will never be zero, as, for example, a meteorite could strike our result just before delivery of the project result.
Recently, it came to my mind that I hardly think about risk in my projects. Everything we do in projects is about
reducing and controlling risk. We just don’t call it risk. In the Evolutionary Project Management approach (Evo) we
combine project management, requirements management, and risk management into result management. As projects
are all about risk reduction, Evo provides methods how to control risk by design, rather than as a separate process. This
booklet describes some examples how this is done.

Niels Malotaux is an independent Project Coach specializing in optimizing project performance. Since 1974 he designed
electronic hardware and software systems, at Delft University, in the Dutch Army, at Philips Electronics and 20 years
leading his own systems design company. Since 1998 he devotes his expertise to helping projects to deliver Quality On
Time: delivering what the customer needs, when he needs it, to enable customer success. To this effect, Niels devel-
oped an approach for effectively teaching Evolutionary Project Management (Evo) Methods, Requirements Engineer-
ing, and Review and Inspection techniques. Since 2001 he taught and coached over 400 projects in 40+ organizations
in the Netherlands, Belgium, China, Germany, India, Ireland, Israel, Japan, Romania, South Africa, Serbia, the UK, and
the US, which led to a wealth of experience in which approaches work better and which work less in the practice of
real projects. He is a frequent speaker at conferences, see www.malotaux.eu/conferences

Find more booklets at: www.malotaux.eu/booklets

1. Evolutionary Project Management Methods

2. How Quality is Assured by Evolutionary Methods

3. Optimizing the Contribution of Testing to Project Success
3a. Optimizing Quality Assurance for Better Results (same as 3, but now for non-software projects)

4. Controlling Project Risk by Design (this booklet)

5. TimeLine: Getting and Keeping Control over your Project

6. Recognizing and Understanding Human Behaviour

7. Evolutionary Planning (similar to booklet#5 TimeLine, but other order, and added predictability)

8. Help! We have a QA problem!

9. Predictable Projects - How to deliver the Right Results at the Right Time

Niels Malotaux

First published: March 2006 - Version 1.07 (some typos): March 2024

N R Malotaux
Consultancy

Niels R. Malotaux
phone +31-655 753 604
mail niels@malotaux.eu
web www.malotaux.eu

http://www.malotaux.eu/booklets

