
Niels Malotaux

now FatalDateHorizon

now

delivery1 delivery2 delivery4 delivery5delivery3

Horizon

now

delivery1
TaskCycle TaskCycle

calibrate calibrate calibrate

Task a 2
Task b 5
Task c 3
Task d 6
Task e 1
Task f 4
Task g 5

Task h 4
Task j 3
Task k 1

26

do
not

do

1 www.malotaux.nl/booklets

Niels Malotaux

1 The Most Important Requirement
The most important requirement for most projects is
time - time for completion. Projects are supposed to
generate a considerable Return on Investment.
Therefore the cost of one day delay is not only the
cost of running the project one day longer, but also
the cost of not being ready one more day (cost of
people or equipment waiting, missed revenue, etc),
which is usually a lot more than the cost of the
project itself. Project delay is costly.
Still, most projects are late. Isn’t it weird that
projects apparently judge all other requirements to
be more important than the requirement of time,
while time is one of the most important
requirements? Both Project Management
(responsible for the project) and Systems
Engineering (responsible for the product) are
responsible for the consequences of ignoring this
important requirement.

2 Are Systems Engineers Interested in Time?
Many people in projects, including Systems
Engineers, think that the delivery time of the project
result is not their responsibility, but rather the
responsibility of project management. They also
seem to think that the system is ready only if “all”
requirements have been met. The existence of this
thinking is the very reason of producing this booklet.
All people working in a project spend time and
should spend their time wisely, taking into account
the impact of their decisions on the success of the
project. Where “other” engineers still may be
accused of silo-thinking, the very reason of Systems
Engineering is to avoid silo-thinking, taking
responsibility for a multi-dimensional variety of
issues: whole lifetime (cradle to cradle), over all
disciplines (including e.g. human behaviour, see
[12]), balancing all systems requirements, including
performances, and optimizing the design decisions
over all requirements, including delivery time.

3 Why are Projects Late?
If we ask people of a project why they are late, they
have a lot of excuses, usually external factors being
the cause of delays. If we ask them what we could
have done about it, they easily have suggestions. We
usually know why we are late and we know ways to
do something about it. The problem is that we don’t
do something about it. One of the problems is that
customers fatalistically think that this is the way it is
and keep paying. If the customers would insist on
the delivery date or else wouldn’t pay, the problem
would have been solved a long time ago.
Some typical causes of delay are:
• Unclear Requirements
• Changing requirements (they do change anyway)
• No Stakeholder feedback
• No adequate planning
• No adequate communication
• Misunderstanding
• Waiting (before and during the project)
• Indecisiveness
• No Sense of Urgency
• Doing things wrong
• Doing unnecessary things
• Doing things over again
• Doing things less cleverly than we could
• Suppliers being late
• Suppliers delivering inadequate quality
• Hobbies
• Political ploys
• Boss is always right (cultural issues)
The only justifiable cost is the cost of developing the
right things at the right time. This looks like
perfection and we know that people are not perfect.
That is, however, not a license to fatally accept all
these delays. A lot of delay is avoidable and
therefore unjustifiable.

Niels Malotaux - Evolutionary Planning or How to Achieve the Most Important Requirement 2

4 Why is Time so Important?
We run a project to design and realize a new system,
because the new system improves upon previous
performance. If it doesn’t, there is no reason for the
new system to be realized. The improvement (e.g.
less loss, more profit, faster achieving the same,
doing more in shorter time, being happier than
before) should have a value way more that the cost
of the project.
Initially, every day of the project adds value, but
towards the end of the project we are in the area of
diminishing returns and every extra day may add less
than the return we would gain by the use of the
result of the project. This calls for a constant
attention to the business case, and a requirements-,
architecture- and design-process that optimizes the
opportunities and challenges of the business case.
This puts the attention to delivery time right in the
centre of the Systems Engineering activities. In some
cases some extra time can significantly increase the
performance of the system, however, in other cases
spending less time can also increase the revenues
from the system: the longer the development takes,
the longer the users have to wait for the enhanced
performance that the project will provide. Time is
money and we don’t have the right to waste it,
unless it’s our own.
If the system we are realizing is a part for a larger
system, the system integrator (our customer if we
are a sub-contractor) prepares other systems,
people and equipment to do the integration into his

system at a certain time. He also alerts the potential
users of the system that they can start reaping the
benefits of the new system at a certain time. If he
doesn’t get our sub-system on time, he’s losing
money, the other systems, people, and equipment
staying idle, while the potential users of the system
also have to change their plans. The cost of one day
of delay to our customer and the deprived benefit to
the ultimate users is a lot more than we realize.

Even doing nothing is a cost factor. Managers often
think that there is no cost involved when people are
not (yet) working on a project. This is a
misconception. Once the idea of the project is born,
the timer starts ticking. Every day we start a project
later, it will be finished a day later, depriving us from
the revenues which by definition are higher than the
cost of the project, otherwise we shouldn’t even
start the project. The only good reason why we
delay this project is that we are spending our limited
resources on more profitable projects.

5 The Fallacy of “All Requirements”
In many projects people say: “All requirements have
to be done, and it simply takes as much time as it
takes; we cannot stop before all is done”. What all is,
usually isn’t really clear and should be defined by the
requirements, which have to be in tune with the
business case, which in most projects isn’t clear to
the project either. These people for some strange
reason forget that delivery time is as much a
requirement as “all” other requirements.
Systems Engineers are supposed to know how to
define real requirements, and they also know that
defining the right requirements is not easy. For most
customers, defining requirements is not a part of
their normal work, so for customers this is even
more difficult. How can we expect that customers
can properly provide us with the right requirements?
Customers specify things they do not really need,
and forget to specify things they do need. It’s the
challenge for the Systems (or Requirements)
Engineer to find the real relevant requirements, as
well as all the relevant Stakeholders. Furthermore,
the Requirements are what the Stakeholders
require, however, for a project, the Requirements
are what the project is planning to satisfy. After all,
we can make great systems, but if the customer
cannot afford the cost, or has to wait a long time,
we both lose.
Because there are always conflicting requirements
(e.g. more performance can be at odds with
acceptable development time or cost), the design

The engineers who designed and built the
baggage handling system of London Heathrow
Airport Terminal 5 claimed that their system was a
huge technical success and that the failure to get
tens of thousands of bags on board of the proper
aircraft was caused by “human error”. After all,
the terminal was delivered on time and on
budget, which admittedly was quite an
achievement. However, a passenger is not
interested in the technical detail of baggage
handling at an airport. The passenger checking in
his baggage expects to receive it back in correct
condition, and as quickly as possible after arriving
at his destination. That’s what performance is
about. How this is achieved is irrelevant to the
passenger. The “system”, as seen by an essential
group of users (the passengers - without
passengers there wouldn’t even be an issue), was
not delivered properly on time and the delays
caused a lot of inconvenience and extra costs.

3 www.malotaux.nl/booklets

process is there to balance and come to an optimum
compromise between the conflicting requirements.
The notion of “all” requirements pretends that “all”
requirements can be met concurrently. If this were
the case, projects would be a lot easier. We know
better.

6 How to Meet the Most Important
Requirement

There are many things we can do to save time in
order to get the result of our project on time. As
soon as we see that it’s impossible to be on time, we
can tell our customer and discuss what we do with
this knowledge. If we tell the customer only at the
end of the project, he really has a problem. If we tell
it as soon as we could have known, which is much,
much earlier in the project, the customer may not
like it, but he has more time to cope with the
consequences.
In the remainder of this booklet we’ll first discuss
the options we have, or seem to have, to get our
project result earlier. Then we’ll discuss the
techniques that are available to really actively make
sure that we always will be on time.

7 Which Options Do We (seem to) Have to be
On Time?

What can we do if what we think1 we have to do
doesn’t fit the available time, or if we want to do
things faster? There are several ways we see people
use to try to finish a project earlier, most of which
are intuitively right, but don’t work. This
contradiction causes people to think that we have to
accept late projects as a fact of life. After all, they did
their best, even took measures (correct measures
according to their intuition), and it didn’t work out.
There are, of course, also measures that do work.

Deceptive measures
Let’s first do away with the deceptive measures.
Deceptive measures are measures we often see
applied, but which don’t work. It’s surprising that
people don’t learn and keep using them.

7.1 Hoping for the best (fatalistic type)
Most projects take more time than expected. Your
past project took longer than expected. What makes

1 We keep saying “what we think we have to do”,

because however good the requirements are, they will
change, because we learn, they learn, and the
circumstances change. The longer the project, the
more the requirements have a chance to change. And
they will change! However, what we do not yet know,
we cannot plan for yet.

you think that this time it will be different? If you
don’t change something in the way you run the
project, the outcome won’t be different, let alone
better. Just hoping that your project will be on time
this time won’t help. We call this ostriching: putting
your head into the sand waiting until Murphy2
strikes again.

7.2 Going for it (macho type)
We know that the available time is insufficient, but it
has to be done: “Let’s go for it!” If nothing goes
wrong (as if that ever is the case) and if we work a
bit harder (as if we don’t already work hard) … Well,
forget it.

7.3 Working Overtime (fooling yourself)
Working overtime is fooling yourself and your boss:
40 hours of work per week is already quite hard. If
you put in more hours, you’ll get more tired, make
more mistakes, having to spend extra time to find
and “fix” the mistakes, half of which you won’t. You
think you are working hard, but you aren’t working
smart. It won’t work. This is also ostriching. As a rule,
never work overtime, so that you have the energy to
do it once or twice a year, when it’s really necessary.

7.4 Adding time: moving the deadline
Moving the deadline further away is also not a good
idea: the further the deadline, the more danger of
relaxing the pace of the project. We call this
Parkinson’s Law3 or the Student Syndrome4. At the
new deadline we probably hardly have done more,
getting the project result even later. Not a good
idea, unless we really are in the nine mother’s area
(see next), where nobody, even with all the
optimization techniques available, could do it. Even
then, just because of the Student Syndrome, it’s
better to optimize what we can do in the available

2 Whatever can go wrong, will go wrong is the popular

version of Murphy’s Law. The real version is: What can
go wrong, will go wrong, so we have to predict all
possible ways it can go wrong, and make sure that these
cannot happen. Spark [1].

3 Parkinson’s Law: “Work expands so as to fill the time
available for its completion” (People use the time
given).
Parkinson [4] observed: “Granted that work (and
especially paperwork) is elastic in its demands on time,
it is manifest that there need be little or no relationship
between the work to be done and the size of the staff
to which it may be assigned.”

4 Starting as late as possible, only when the pressure of
the Fatal Date is really felt. Term attributed to E. Goldratt
[5].

Niels Malotaux - Evolutionary Planning or How to Achieve the Most Important Requirement 4

time before the deadline. The earlier the deadline,
the longer our future afterwards, in which we can
decide what the next best thing there is to do. So
the only way a deadline may move is towards us. We
better optimize the time spent right from the
beginning, because we’ll probably need that time
anyway at the end. Optimizing only at the end won’t
bring back the time we lost at the beginning.
Optimizing only towards the end also means that
there is much less we still can optimize.

7.5 A riskful measure: adding people …
A typical move is to add people to a project, in order
to get things done in less time. Intuitively, we feel
that we can trade time with people and finish a 12
person-month project in 6 months with 2 people or
in 3 months with 4 people, as shown in Figure 1. In
his essay The Mythical Man-Month, Brooks [2] shows
that this is a fallacy, defining Brooks’ Law: Adding
people to a late project makes it later.
Putnam [3] confirms Brook’s Law with measure-
ments on some 500 (software) projects. He found
that if the project is done by 2 or 3 people, the
project-cost is minimized, while 5 to 7 people
achieve the shortest project duration at premium
cost, because the project is only 20% shorter with
double the amount of people. Adding even more
people makes the project take longer at excessive

cost. Apparently, the project duration cannot
arbitrarily be shortened, because there is a critical
path of things that cannot be parallelized. We call
the time in which nobody can finish the project the
nine mothers’ area, which is the area where nine
mothers produce a baby in one month.
When I first heard about Brooks’ Law, I assumed
that he meant that we shouldn’t add people at the
end of a project, when time is running out. After all,
many projects seem to find out that they are late
only by the end of the project. The effect is,
however, much trickier: if in the first several weeks of
a project we find that the speed is slower than
expected, and thus have to assume that the project
will be late, even then adding people can make the
project later. The reason is a combination of effects.
More people means more lines of communication
and more people to manage, while the project
manager and the architect or the Systems Engineer
can oversee only a limited number of people before
becoming a bottleneck themselves. Therefore,
adding people is not automatically a solution that
works. It can be very risky.
How can those mega-projects, where 100’s of people
work together, be successful? Well, in many cases
they are not. They deliver less and later than the
customer expects and many projects simply fail. The

only way to try to circumvent Brooks’ Law is to
work with many small teams, who can work in
parallel, and who synchronize their results only
from time to time. If you think Brooks’ Law won’t
bite you, you better beware: it will!
In a recent project that went too slow, the number
of people was increased from 5 people to 20
people. The measured productivity increased by
50%. It took project management several months to
decide to decrease (against their intuition!) the
number of people back from 20 to 10. Once they
did, the net productivity of the 10 people was the
same as with those 20 people. So, for several
months, they had been paying 10 people with no
net result.5

7.6 The Measure That Always Works: Saving Time
Fortunately, there are ways to save time, without
negatively affecting the Result of the project (on the
contrary!). These techniques are collected and
routinely used in the Evolutionary Project
Management (Evo) approach in order to achieve
the best solution in the shortest possible time.

5 This case made me investigate Brooks’ Law as

described here!

Figure 1: The Myth of the Man-Month:

reality is completely different

1 2 3 4 5 6 7 8 9 16151413121110

1

2

3

4

5

6

7

8

9

16

15

14

13

12

11

10

intuition:
people x duration = constant
Man Month Myth

reality
(Putnam)

shorter time

lower cost

nine mothers area

number of people

p
ro

je
ct

 d
u

ra
ti

o
n

Economic
optimum?

5 www.malotaux.nl/booklets

The Evo approach uses, and constantly
evolutionarily optimizes the elements of saving time:
Plan-Do-Check-Act cycles (or ‘Deming cycles’ -
Deming [6]), Zero-Defects attitude (Crosby [7]),
Business Case techniques, specific Requirements
Management techniques [8,11], Design techniques,
Early Reviews, and Evolutionary Planning techniques
like TaskCycles, DeliveryCycles and TimeLine.
Background of the Evo approach can be found in
Gilb [8] and Malotaux [9,10,11,12]. Projects starting
to use the Evo approach start saving 30% time within
a few weeks, while delivering better results.

The elements of saving time are:
Improving the efficiency in what (why, for whom)
we do: doing only what is needed, not doing things
that later prove to be not needed, preventing
mistakes and preventing working on superfluous
things. Because people tend to do more than
necessary, especially if the goals aren’t clear, there is
ample opportunity for not doing what is not needed.
We use the Business Case and continuous
Requirements Management to control this process.
We use the TaskCycle, to weekly decide what we are
going to do and what we are not going to do, before
we do it. This saves time. Afterwards we only can
identify what we unnecessarily did, but the time is
already spent and cannot be regained.

Improving the efficiency in how we do it: doing
things differently.
This works in several dimensions:

The product
Choosing the proper and most efficient solution.
The solution chosen determines both the
performance and cost of the product, as well as the
time and cost of the project. Because performance
and project time are usually in competition, the
solution should be an optimum compromise and
not just the first solution that comes to mind. We
use Architecture and Design processes to optimize
the result. We use DeliveryCycles to check the
requirements and assumptions with the
appropriate Stakeholders.
The project
We can probably do the same in less time if we
don't immediately do it the way we always did, but
first think of an alternative and more efficient way.
We do not only design the product, we also
continuously redesign the project. We use
Evolutionary Planning to control this process.

Continuous improvement and prevention
processes
Actively and constantly learning how to do things
better and how to overcome bad tendencies. We
use rapid and frequent Plan-Do-Check-Act (PDCA or
Deming) cycles to actively improve the product, the
project and the processes. We use Early Reviews to
recognize and tackle tendencies before they
pollute our work products any further, and we use
a Zero-Defect attitude because that is the only way
ever to approach Zero Defects.
Improving the efficiency of when we do it: doing
things at the right time, in the right order.
A lot of time is wasted by synchronization problems
like waiting for each other, or redoing things that
were done in the wrong order. Actively
Synchronizing and designing the order of what we
do saves time. We use Evolutionary Planning with
constant, active prioritization to control this
process, with TaskCycles and DeliveryCycles to make
sure we do the right things in the right order, and
TimeLine to get and keep the whole project under
control. Elements of these are Just Enough
Estimation, Dynamic Prioritizing and Calibration
techniques.

All of these elements are huge time savers. Of
course we don’t have to wait for a project getting
into trouble. We also can apply these time savers if
what we think we have to do easily fits in the
available time, to produce results even faster. We
may even need the time saved to cope with an
unexpected drawback, in order still to be on time
and not needing any excuse.
TimeBoxing provides the incentive to constantly
apply these ways to save time, in order to stay
within the TimeBox. For TimeBoxing to work
properly, it is important to change from optimistic or
pessimistic, to realistic estimation. If the TimeBox is
too short, we cause stress with adverse effects. If
the TimeBox is too long, we’re wasting time. In the
experience of the author, people in projects can
easily change into realistic estimators in a few
weeks’ time, if and only if we are serious about time.
TimeBoxing is much more efficient than
FeatureBoxing (= waiting until we’re ready), because
with FeatureBoxing we lack a deadline, causing
Parkinson’s Law and the Student Syndrome to kick
in badly.
Note that this concept of saving time is similar to
“eliminating waste” in Lean thinking, as already
indicated by Henry Ford in his book “My Life and
Work”, back in 1922 [13]: “We eliminated a great

Niels Malotaux - Evolutionary Planning or How to Achieve the Most Important Requirement 6

number of wastes”. Deming also mentioned “Not so
much waste” on page 1 of his book Out of the Crisis
[6].
Because the time saving actions don’t come easy
(otherwise this would be practiced already
everywhere), it’s advisable for Systems Engineering
to work together and synchronize adequately with
Project Management, to constantly seek for ways to
improve on this. We suggest studying the
Evolutionary approach and using it to the advantage
of the project success.

8 Evolutionary Planning
The Evolutionary Planning process uses three main
elements, see Malotaux [9,10]:
• The weekly TaskCycle to organize the work, to

make sure we are at any time working only on the
most important things and don’t work on less
important things. We quickly learn to promise
what we can do and then to live up to our
promises. This removes a lot of quick-sand from
under the project.

• The bi-weekly DeliveryCycle to check the
requirements and challenge our assumptions and
perceptions.

• TimeLine to get and keep control over longer
periods of time and to provide reliable status
information to the project, as well as to
Portfolio/Program/Resource management.

We’ll show now how these three elements fit
together to get and keep the project under control.
TimeLine. In many projects all the work we think we
have to do is cut into pieces, the pieces are
estimated, and the estimates are added up to arrive
at an estimate of the effort to do the work. Then this
is divided over the available people (however,
beware of Brooks’ Law!), to arrive at an estimate of
the duration of the work, which, after adding some
contingency, is presented as the duration of the
project (Figure 2).
A problem is that in many cases the required delivery
date is earlier. The tension between estimated and
expected delivery causes extra time spent in

discussions, while the required delivery date doesn’t
change, leaving even less time for the project.
Because the delivery date is a requirement just as all
the other requirements, it has to be treated as
seriously as all the other requirements. With
TimeLine, we treat delivery dates seriously and we
meet these dates, or we very quickly explain, based
on facts, why the delivery date cannot be met.
We don’t wait until the FatalDate to tell that we
didn’t make it, because if it’s really impossible, we
knew it much earlier. If it is possible, we deliver,
using all the time-saving techniques to optimize
what we can deliver when.
TimeLine can be used on any scale: on a program, a
project, a sub-project, on deliveries, and even on
tasks. The technique is always the same. We
estimate what we think we have to do, see that we
need more time than we have, and then discuss the
TimeLine with our customer or other appropriate
Stakeholders and explain (Figure 3):
• What, at the FatalDate, surely will be done
• What surely will not be done
• What may be done (after all, estimation is not

exact science)
If what surely will be done is not sufficient for
success, we better stop now to avoid wasting time
and money. Note that we put what we plan in strict
order of priority, so that at the FatalDate at least
we’ll have done the most important things.
Customers don’t mind about the bells and whistles if
Time to Market is important. Because priorities may
change very dynamically, we have to constantly
reconsider the order of what we do when.
Setting a Horizon. If the total project takes more
than 10 weeks, we define a Horizon (Figure 4) at
about 10 weeks on the TimeLine, because we cannot
really oversee longer periods of time. A period of 10
weeks proves to be a good compromise between
what we can oversee, while still being long enough
to allow for optimizing the order in which we deliver
results. We don’t forget what’s beyond the horizon,
but for now, we concentrate on the coming 10
weeks.

Figure 2: Standard approach: it takes what it takes, but often that’s too late

now “all” done

all we think we have to do with the resources we have contingency

date needed (FatalDate)

7 www.malotaux.nl/booklets

DeliveryCycles. Within these 10 weeks, we plan
DeliveryCycles of maximum 2 weeks, asking: “What
are we going to deliver to whom and why?”
Deliveries are for getting feedback from
Stakeholders. We are humble enough to admit that
our (and their) perception of the requirements is not
perfect and that many of our assumptions may be
incorrect. Therefore we need communication and
feedback. We deliver to eagerly waiting
Stakeholders, otherwise we don’t get feedback. If
the appropriate Stakeholders aren’t eagerly waiting,
either they’re not interested and we may better
work for other Stakeholders, or they have to be
made eagerly waiting by delivering what we call
Juicy Bits. How can juicy bits have a high priority? If
we don’t get appropriate feedback, we will probably
be working based on incorrect assumptions, causing
us to doing things wrong, which will cause delay
later. Therefore, if we need to deliver juicy bits to
Stakeholders to make them eagerly waiting in order
to get the feedback that we awfully need, this has a
high priority.
TaskCycles. Once we have divided the work over
Deliveries, which are Horizons as well, we now
concentrate on the first few Deliveries and define

the actual work that has to
be done to produce these
Deliveries. We organize this
work in TaskCycles of one
week. In a TaskCycle we
define Tasks, estimated in
net effort-hours (see [9],
section 6.1, for a more
detailed explanation). We
plan the work in plannable

effort time, which defaults to 2/3 of the available
time (26 hrs in case of a 40 hr week), confining all
unplannable project activities like email, phone-calls,
planning, small interrupts, etc, to the remainder of
the time. We put this work in optimum order, divide
it over the people in the project, have these people
estimate the time they would need to do the work,
see that they don’t get overloaded and that they
synchronize their work to optimize the duration.

9 Just Enough Estimation
There are several methods of estimation. There are
also ways to quickly change from optimistic to
realistic estimation. An important prerequisite is that
we start treating time seriously, creating a Sense of
Urgency and that we care about time. It is also
important to learn how to spend just enough time on
estimation. Not more and not less.

9.1 Changing from optimistic to realistic estimation
In the Evo TaskCycle we estimate the effort time for
a Task in hours. The estimates are TimeBoxes, within
which the Task has to be completely done, because
there is not more time. Tasks of more than 6 hours
are cut into smaller pieces and we completely fill all
plannable time (i.e. 26 hours, 2/3 of the 40hr

Figure 3: Basic TimeLine: what will surely be done,

what will not be done, and what may be done

now date needed (FatalDate)

most important things bells & whistles

will be done might be done not done

Figure 4: TimeLine summary:

setting a FatalDate, a Horizon, Deliveries, TaskCycles, and then calibrating back

now FatalDateHorizon

now

delivery1 delivery2 delivery4 delivery5delivery3

Horizon

now

delivery1
TaskCycle TaskCycle

calibrate calibrate calibrate

Task a 2
Task b 5
Task c 3
Task d 6
Task e 1
Task f 4
Task g 5

Task h 4
Task j 3
Task k 1

26

do
not

do

Niels Malotaux - Evolutionary Planning or How to Achieve the Most Important Requirement 8

available time in a work week). The aim in the
TaskCycle is to learn what we can promise to do and
then to live up to our promises. If we do that well,
we can better predict the future. Experience by the
author shows that people can change from
optimistic to realistic estimators in just a few weeks,
once we get serious about time. At the end of every
weekly cycle, all planned Tasks are done, 100% done.
The person who is going to do the Task is the only
person who is entitled to estimate the effort needed
for the Task and to define what 100% done means.
Only then, if at the end of the week a Task is not
100% done, that person can feel the pain of failure
and quickly learn from it to estimate more
realistically the next week. If we are not serious
about time, we’ll never learn, and the whole
planning of the project is just quicksand!

9.2 0th order estimations
0th order estimations, using ballpark figures we can
roughly estimate, are often quite sufficient for
making decisions. Don’t spend more time on
estimation than necessary for the decision. It may be
a waste of time. We don’t have time to waste.
Example: How can we estimate the cost of one
month delay of the introduction of our new product?
How about this reasoning: The sales of our current
most important product, with a turnover of about
$20M per year, is declining 60% per year, because the
competition introduced a much better product.
Every month delay costs about 5% of $20M, being
$1M. Knowing that we are losing about $1M a month,
give or take $0.5M, could well be enough to decide
that we shouldn’t add more bells and whistles to the
new product, but rather finalize the release. Did we
need a lot of research to collect the numbers for this
decision …?
Any number is better than no number. If a number
seems to be wrong, people will react and come up
with reasoning to improve the number. And by using
two different approaches to arrive at a number we
can improve the credibility of the number.

9.3 Simple Delphi
If we’ve done some work of small complexity and
some work of more complexity, and measured the
time we needed to complete those, we are more
capable than we think of estimating similar work,
even of different complexity. A precondition is that
we become aware of the time it takes us to
accomplish things. There are many descriptions of
the Delphi estimation process [14], but, as always,
we must be careful not to make things more

complicated than absolutely necessary. Anything we
do that’s not absolutely necessary takes time we
could save for doing more important things!

Our simple Delphi process goes like this:
1. Make a list of things we think we have to do in

just enough detail. Default: 15 to 20 chunks.
2. Distribute this list among people who will do the

work, or who are knowledgeable about the work.
3. Ask them to add work that we apparently forgot

to list, and to estimate how much time the
elements of work on the list would cost, “as far
as you can judge”.

4. In a meeting the estimates are compared.
5. If there are elements of work where the

estimates differ significantly between estimators,
do not take the average, and do not discuss the
estimates (estimates are non-negotiable!).
Discuss the contents of the work, because
apparently different people have a different idea
about what the work involves. Some may forget
to include things that have to be done, some may
think that more has to be done than has to be
done. Making more clear what has to be done
and what has not to be done, usually saves time.

6. After the discussion, people estimate individually
again and then the estimates are compared
again.

7. Repeat this process until sufficient consensus is
reached (usually repeating not more than once or
twice).

8. Add up all the estimates to end up with an
estimate for the whole project.

Don’t be afraid that the estimates aren’t exact, they
won’t be anyway. By adding many individual
estimates, however, the variances tend to average
and the end result is usually not far off. Estimates
don’t have to be exact, as long as the average is OK.
Using Parkinson’s Law in reverse, we now can fit the
work to fill the time available for its completion. We
use Calibration to measure the real time vs.
estimated time ratio, to extrapolate the actual
expected time needed (see chapter 11).
In a recent case, to save even more time on the
estimation process, we used “Simpler Delphi”:
instead of steps 6 and 7 of the process shown, we
took the minimums and maximums of the individual
estimates, and then decided by quick consensus
which time (within the min-max range) to use. This
short-cut worked quite well.

9 www.malotaux.nl/booklets

9.4 Estimation tools
There are several estimation methods and tools on
the market, like e.g. COCOMO [15], QSM-SLIM [16]
and Galorath-SEER [17]. These tools rely on historical
data of lots of projects as a reference. The methods
and tools provide estimates for the optimum
duration and the optimum number of people for the
project, but have to be tuned to the local
environment. With the tuning, however, a wide
range of results can be generated, so how would we
know whether our tuning provides better estimates
than our trained gut-feel?
The use of tools poses some risks:
• For tuning we need local reference projects. If we

don’t have enough similar (similar people,
techniques, environments, etc …) projects, we
won’t be able to tune. Perhaps these tools may
work better in large organizations with a lot of
similar projects.

• We may start working for the tool, instead of
having the tool work for us. Tools don’t pay
salaries, so don’t work for them. Only use a tool if
it provides good Return on Investment (RoI) for
you.

• A tool may obscure the data we put in, as well as
obscure what it does with the data, making it
difficult to interpret what the output of the tool
really means, and what we can do to improve. We
may lose the connection with our gut-feel, which
eventually will have to make the decision.

Use a tool only when the simple Delphi and 0th order
approaches, combined with realistic estimation
rather than optimistic estimation, really prove to be
insufficient and if you have sufficient reasons to
believe that the tool will provide good RoI.

10 Calibration
Having estimated the work that has to be done in
the first week, we have captured the first metrics for
calibrating our estimates on the TimeLine. If the
Tasks for the first week would deliver about half of
what we need to do in that week, we now can
extrapolate that our project is going to take twice as
long, if we keep working the way we did, that is: if
we don’t do something about it. Initially the data of
the first week’s estimate may seem weak evidence,
but it’s already an indication that our estimates may
be too optimistic. Putting our head in the sand for
this evidence is dangerous: I’ve heard all the excuses
about “one-time causes”. Later there were always
other “one-time causes”.
One week later, when we have the actual results of
the first week, we have slightly better numbers to
extrapolate and scale how long our project really
may take. Week after week we will gather more
information with which we calibrate and adjust our
notion of what will be done at the FatalDate or what
will be done at any earlier date. This way, the
TimeLine process provides us with very early
warnings about the risks of being late. The earlier we
get these warnings, the more time we have to do

something about it.

Let’s take an ex-
ample of taking the
consequence of the
TimeLine (Figure 5):
Initially, we estimate
that the work we
think we have to do
in the coming 10
weeks is about 50
person Weeks of
Work (WoW, line a).
We start with 5
people. After 4
weeks, we find that
10 WoW are
completed (line b),
instead of the
expected 20 WoW. If
we don’t change our
ways of working, the

Figure 5: Earned Value (up to week 4) and Value Still to Earn (from week 5)

2 4 6 8 10

f

a c

g2

b

60

50

40

30

20

10

12 14

d

e2

16 18 20

e

h

g

w
ee

ks
 o

f w
or

k
- W

oW

time (calendar weeks)

Niels Malotaux - Evolutionary Planning or How to Achieve the Most Important Requirement 10

project will take twice as long (line d) or produce
only half (line c) in 10 weeks. If the deadline is really
hard, a typical reaction of management is to throw
more people at the project (line e, wishful thinking).
However, based on our progressing understanding
of the work, we found that we forgot to plan some
work that also “has” to be done: we now think we
still have to do 50 WoW in the remaining 6 weeks
(line f).
Management decides to add even more people to
the project, because they don’t want the project to
take longer. You can even calculate how many
people management will have to add, based on the
numbers in the example of figure 5. This solution,
however, won’t produce the desired outcome, and
even work out counterproductive, because of
Brooks’ Law (chapter 7.5).
We can counter this dilemma by actively saving time,
doing only what is really necessary (line g), or a
combination of not doing what is not necessary (line
g2) and doing things more productively (line h), as
explained in section 7.6. Actively designing what
exactly to do and in which order, saves a lot of time.

11 Predicting the future.
Using calibration, we can quite well predict what will
be done when (figure 6). The estimates don’t have
to be exact, as long as the relative values are
consistent: if Activity1 is estimated to take 2 (units of
estimation) and Activity2 to take 1, then we assume
that Activity1 will take twice as long as Activity2. We
see that people are reluctant to accept that rather
imprecise estimates yield rather good overall
predictions. In practice, the positive and negative
inaccuracies average out, providing a quite good
accuracy of the summed total. Some people are
even reluctant to estimate at all, being afraid to fail
their estimates. However, if you don’t have an
estimate to fail on, you cannot learn, while the
experience of failure makes us learn quickly, as long
as we want to learn.
Once we have done several Activities, we know how
long these activities took and now we can calibrate
the remainder of the estimates to reality. We
average the calibration factor over several recent
activities until now:

Calibration Factor =

∑

∑
−

−

−

−
nnow

now

nnow

now

Ae

Ar

1

1

(Ar is real time, Ae is estimated time of an Activity)

Now we can use this calibration factor to predict
how much time we need for future activities:

Time needed for Value-Still-to-Earn (by then) =

Calibration Factor ∗ ∑
then

now
Ae

This way we can predict when we will have done
what, or when “all” is done.
This list of activities still to do (Value-Still-to-Earn) will
constantly be updated:
• Activities will be added when we recognize that

we forgot some things we have to do
• Activities will be updated when we find we can

define them better
• Activities will be deleted, or moved to the bottom

once we see that they don’t add enough value
• The order of activities will be changed, once we

find out that the priorities have changed
• Estimates will be updated to reflect better

insight, although the estimates should be made
based on the same assumptions as the original
estimates, to keep the calibration working

Activity Estim Real
Act1 Ae1 Ar1
Act2 Ae2 Ar2
Act3 Ae3 Ar3
Act4 Ae4 Ar4
Act5 Ae5 Ar5
Act6 Ae6 Ar6
Act7 Ae7 Ar7
Act8 Ae8 Ar8
Act9 Ae9 Ar9
Act10 Ae10 Ar10
Act11 Ae11
Act12 Ae12
Act13 Ae13
Act14 Ae14
Act15 Ae15
Act16 Ae16
Act17 Ae17
Act18 Ae18
Act19 Ae19
Act20 Ae20
Act21 Ae21

Act… Ae…

Figure 6: Using the list of activities to
predict what will be done when

Ratio
ΣAr / ΣAe
in the past

Predicted
ValueStillToEarn
in the future

now

then

then2

11 www.malotaux.nl/booklets

Note that we shouldn’t use these numbers
mechanistically. We still have to judge the credibility
of what the mathematics tell us and adjust our
understanding accordingly.
In conventional projects this manual interpretation
may still lead to over-optimistic predictions, espe-
cially if what the numbers tell us is “undesirable”. In
Evo projects, however, we want to succeed in the
available time or earlier, so we are realistic and
rather see any warning we can use to constantly
improve, or to discuss the consequences with the
customer as soon as possible.
In practice I’ve seen calibration factors of 2 at the
start of the project and then growing and stabilizing
at 4 when the project is running at full strength. In
some hardware development projects I’ve seen
calibration factors between 1 to 1.5. In other projects
we may see yet other factors. Note that the
calibration factors of different projects are not good
or bad and cannot be compared: they are simply the
ratio of how much time this project needs to
accomplish its activities, and the estimates as
produced by the project’s estimation standard.
Different projects have different people and
estimate in different ways. They merely calibrate the
assumptions used at the original estimate, where
they may not have taken into account V&V, SE,
project management, education, and many other
things that have to be done in the project as well.
Once the calibration factor has stabilized, we can
use the slope of the factor to warn for deterioration
and to see the effect of process improvements.

12 Summarizing the TimeLine technique
Summarizing the TimeLine technique:
• Cutting what we think we have to do into up to

some 20 chunks (packages, activities) and
estimating these chunks. Adding up the estimates
usually provides sufficient evidence that we need
more time than we have available. At this point,
most projects decide that they simply need more
time, or complain that management is imposing
impossible deadlines.

• With Evolutionary Planning, however, we don’t
stop here, but think of alternative strategies of
doing things, doing different things or doing
things differently. We estimate the impact on the
result and choose the optimum strategy. Now we
have well-founded arguments to explain
management why things will take as much as
they still will do. Management is not stupid. If you
don’t give them facts, they will tell you what to

do, based on their fantasy. If together you look at
the facts, you together can decide what to do
about it.

• Now the chosen strategy is planned, focused on
the optimum order of implementing the optimum
solution, still being aware that “optimum”
gradually may change by advancing
understanding. It’s of no use continuing an initial
plan once we see that it should be changed.
That’s why we have to continuously keep using
the Plan-Do-Check-Act technique, with the
Business Case as a reference. And of course the
Business Case can change in time as well!

• Now we can start predicting what will be done
when, based on the estimations and subsequent
calibration to reality. This provides the business
with quite reliable predictions, allowing them to
provide reliable predictions to their customers.

Figure 7 shows a simplified example of a TimeLine
table, stating the Activity-description, the estimate,
the time already spent and the time still to spend,
the ratio of real and estimated time, the calibration
factor (ratio of total real and estimated time during a
past period), the resulting calibrated (“real”) time
still to spend and the resulting dates. If in this
example the project has to be concluded on 5 June,
we now can say that Activities 17 and 18 won’t be
done at that deadline, unless we do something
differently. This way, we can very early in a project
predict what will be done when and take the
consequence of the prediction, rather than sticking
our head in the sand until reality hits us somewhere.
The biggest hurdle is that most project managers
have trouble finding out which activities have to be
done, causing starting up this technique to take
some time. Once this hurdle is taken, however, it
hardly takes time to keep the TimeLine up to date,
giving real control over the further prediction and
the progression of the project.
Traditionally, Program/Portfolio/Resource Manage-
ment (PPRM) is based on hope. After all, if most
projects are late, planning based on assumed
deadlines which are not kept, apparently is more a
game than management. Once the projects have
learnt to sufficiently reliably predict what can be
done when, PPRM can finally start really managing.
This is what we see happening once this process is in
place.
The Ratio real/estimated proved also to be an
interesting indicator: an organization outsourcing
refactoring and design of software to China, found
that the supplier was quite good in refactoring and

Niels Malotaux - Evolutionary Planning or How to Achieve the Most Important Requirement 12

debugging, with a ratio slightly less than 1, meaning
always done within the estimated time. When they
saw ratios of 4 and 6, however, they checked the
type of activities and found that these were all
design activities. Apparently this supplier wasn’t
good at design (yet?), or at least not good at
estimating design time.

13 Time as a Requirement for the System After
the Project

There are many more Time Requirements than only
the duration of the project. During the project, we
can still influence and optimize the time spent on
what we think we have to do to realize the system.
After the project, however, the system is left to its
own devices and must perform autonomously. We
have no influence on the timings of the system
anymore and the performances delivered by the
new system have to be there by design. This is
typically a responsibility and required skill of Systems
Engineering. Very important for the success of the
project, and of essential concern of Evo, however,
this is not further elaborated in this booklet.

14 Conclusion
Evolutionary Planning doesn’t solve our problems. It
rather is a set of techniques to plan and early expose
the real status of our project. Then, instead of
accepting an undesired outcome, we have ample

opportunity of doing something about it. People do a
lot of unnecessary things in projects, so it’s
important to identify those things before spending
time on them. If we later find out that we did
unnecessary things, the time is already spent, and
never can be regained. By revisiting the TimeLine
every week, we stay on top of how the project is
developing and we can easily report to management
the real status of the project and also show the
consequences of management decisions affecting
the project.
Doesn’t all this planning take a lot of time? The first
few times it does, because we have to learn how to
use the techniques. After a few weeks, however, we
dash it off and we can start optimizing the results of
the project, producing more than ever before.
Evolutionary Planning allows us to take our head out
of the sand, stay in control of the project and deliver
Results successfully, on time. Still, many Project
Managers hesitate to start using these techniques.
However, after having done it once, the usual
reaction is: “Wow! I got much better oversight over
the project than I ever expected”, and the hesitation
is over. Another reaction: “We never did this before.
Now we’re finally in control!”
These techniques are not mere theory. They’re
highly pragmatic, and successfully used in many
projects coached by the author. The most commonly
encountered bottleneck is that no one in the project

Line Activity Estim Spent Still to
spend

Ratio
real/es

Calibr
factor

Calibr
still to

Date
done

1 Activity 1 2 2 0 1.0
2 Activity 2 5 5 1 1.2 1.0 1 30 Mar 2009
3 Activity 3 1 3 0 3.0
4 Activity 4 2 3 2 2.5 1.0 2 1 Apr 2009
5 Activity 5 5 4 1 1.0 1.0 1 2 Apr 2009
6 Activity 6 3 1.4 4.2 9 Apr 2009
7 Activity 7 1 1.4 1.4 10 Apr 2009
8 Activity 8 3 1.4 4.2 16 Apr 2009
↓ ↓
16 Activity 16 4 1.4 5.6 2 Jun 2009
17 Activity 17 5 1.4 7.0 11 Jun 2009
18 Activity 18 7 1.4 9.8 25 Jun 2009

Figure 7: Simplified TimeLine sheet, indicating what will be done when based on estimates and a calibrated
future. It also shows what will not be done at a certain date, giving us early warnings: on 5 June, Activities 17
and 18 won’t be done. The earlier we get a warning, the more time we have to do something about it. Some
notes: In this table we don’t calibrate Still-to-Spend (by using calibration factor 1.0), because of assumed
improved insight with Tasks almost done. Activities not yet started are calibrated by the ratio of Spent plus
Still to Spend and the original estimates. Apparently, this is a snapshot of 29 March.

13 www.malotaux.nl/booklets

has an oversight of what exactly the project is
supposed to accomplish. This may be why Project
Managers hesitate to start using these techniques. If
you don’t know well what to do, planning isn’t easy.
Redefining what the project is to accomplish and
henceforth focusing on this goal is the first
immediate timesaver, with many more savings to
follow.
I hear many Systems Engineers say that they know
all these things, and that they are doing these things
already. Be honest. We do know most of the
techniques mentioned in this booklet, but do we
really use and continuously improve on them? If we
really would, we wouldn’t need excuses for late
deliveries any more.

Niels Malotaux - Evolutionary Planning or How to Achieve the Most Important Requirement 14

References

[1] Spark, Nick T: A History of Murphy's Law, 2006, Periscope Film, ISBN 0978638891
[2] Brooks, Fred P: The Mythical Man-Month, 1975, Addison Wesley, ISBN 0201006502

Reprint 1995, ISBN 0201835959
[3] Putnam, Doug: Team Size Can Be the Key to a Successful Project, www.qsm.com/process_01.html
[4] Parkinson, C. Northcote: Parkinson’s Law, www.economist.com/news/1955/11/19/parkinsons-law
[5] Goldratt, Eli M: Critical Chain, 1997, Gower, ISBN 0566080389
[6] Deming, W.E: Out of the Crisis, 1986. MIT, ISBN 0911379010

Walton, M: Deming Management at Work, 1990. The Berkley Publishing Group, ISBN 0399516859
[7] Crosby Philip B: Quality is still free, 1996, McGraw-Hill, ISBN 0070145326
[8] Gilb, Tom: Principles of Software Engineering Management, 1988, Addison Wesley, ISBN 0201192462

Gilb, Tom: Competitive Engineering, 2005, Elsevier, ISBN 0750665076
[9] Malotaux, Niels: How Quality is Assured by Evolutionary Methods, 2004. Pragmatic details how to

implement Evo, based on experience in some 25 projects in 9 organizations
www.malotaux.nl/booklets - booklet#2

[10] Malotaux, Niels: TimeLine: Getting and Keeping Control over your Project, 2007,
www.malotaux.nl/booklets - booklet#5

[11] Malotaux, Niels: Controlling Project Risk by Design, 2006, www.malotaux.nl/booklets - booklet#4
[12] Malotaux, Niels: Recognizing and Understanding Human Behaviour to Improve Systems Engineering Results,

2008, APCOSE2008, www.malotaux.nl/booklets - paper#6
[13] Ford, Henry: My Life and Work, 1922, www.gutenberg.org/dirs/etext05/hnfrd10.txt
[14] https://en.wikipedia.org/wiki/Delphi_method
[15] Boehm, Barry: Software Engineering Economics, Prentice-Hall, 1981, ISBN 0138221227
[16] www.qsm.com
[17] www.galorath.com

The most important requirement for most projects is time - time for completion. Still, most projects are late. Isn’t it
weird that projects apparently judge all other requirements to be more important than the requirement of time while
time is one of the most important requirements? Both Project Management (responsible for the project) and Systems
Engineering (responsible for the product) are responsible for the consequences of ignoring this important
requirement. This booklet describes why it is important to be on time, what measures we can take to make sure we
are on time, which often applied intuitive measures don’t work, and how we can use Evolutionary Planning
techniques to make sure that we will be on time, or, if that is simply impossible, to take the consequence. These
techniques allow us in the early stages of our project to predict and to optimize what will be ready at a certain time.
Note - This is not a scientific study but rather based on empirical evidence collected by the author while coaching over
100 projects in the past 10 years.

Niels Malotaux is an independent Project Coach specializing in optimizing project performance. Since 1974 he
designed electronic hardware and software systems, at Delft University, in the Dutch Army, at Philips Electronics and
20 years leading his own systems design company. Since 1998 he devotes his expertise to helping projects to deliver
Quality On Time: delivering what the customer needs, when he needs it, to enable customer success. To this effect,
Niels developed an approach for effectively teaching Evolutionary Project Management (Evo) Methods,
Requirements Engineering, and Review and Inspection techniques. Since 2001 he taught and coached over 400
projects in 40+ organizations in the Netherlands, Belgium, China, Germany, India, Ireland, Israel, Japan, Romania,
South Africa, Serbia, the UK, and the US, which led to a wealth of experience in which approaches work better and
which work less in the practice of real projects. He is a frequent speaker at conferences, see
www.malotaux.nl/conferences

Find more booklets at: www.malotaux.nl/booklets
1. Evolutionary Project Management Methods
2. How Quality is Assured by Evolutionary Methods (this booklet)
3. Optimizing the Contribution of Testing to Project Success
3a. Optimizing Quality Assurance for Better Results (same as 3, but now for non-software projects)
4. Controlling Project Risk by Design
5. TimeLine: Getting and Keeping Control over your Project
6. Recognizing and Understanding Human Behaviour
7. Evolutionary Planning (similar to booklet#5 TimeLine, but other order and added predictability)
8. Help! We have a QA problem!
ETA: Evo Task Administration tool - www.malotaux.nl/?id=downloads#ETA

Originally prepared for the INCOSE International Symposium, Singapore 2009
Version 2.3 (formatting, some typos, checked links, updated bio) - 30 Aug 2018

N R Malotaux
Consultancy
Niels R. Malotaux
phone +31-655 753 604
mail niels@malotaux.nl
web www.malotaux.nl

Niels Malotaux

	1 The Most Important Requirement
	2 Are Systems Engineers Interested in Time?
	3 Why are Projects Late?
	4 Why is Time so Important?
	5 The Fallacy of “All Requirements”
	6 How to Meet the Most Important Requirement
	7 Which Options Do We (seem to) Have to be On Time?
	7.1 Hoping for the best (fatalistic type)
	7.2 Going for it (macho type)
	7.3 Working Overtime (fooling yourself)
	7.4 Adding time: moving the deadline
	7.5 A riskful measure: adding people …
	7.6 The Measure That Always Works: Saving Time

	8 Evolutionary Planning
	9 Just Enough Estimation
	9.1 Changing from optimistic to realistic estimation
	9.2 0th order estimations
	9.3 Simple Delphi
	9.4 Estimation tools

	10 Calibration
	11 Predicting the future.
	12 Summarizing the TimeLine technique
	13 Time as a Requirement for the System After the Project
	14 Conclusion

