Niels Malotaux

Help ! We have a QA Problem !




Niels Malotaux

Help ! We have a QA Problem

1 The problem

| got a phone call from a R&D manager: “We have a
QA problem! Can you help?” In most cases this
means that they think they have a testing problem,
and this case was not different: One senior tester
just had left the company because he had
complained about his salary, and the remaining
senior tester was starting to complain as well. This
may be difficult for others to understand, but
engineers in general like their work, and if they start
complaining about the salary, something is very
wrong in the organisation. The senior tester, with
only one junior tester to assist, was paralysed by the
pile of work in front of him. Some 15 developers
producing hardware, firmware and software caused
the pile to grow faster than the remaining testers
could handle. Customers were waiting too long for
solutions to their problems, becoming really
impatient, and started abandoning this supplier in
favour of the competition. As often is the case, the
testers were blamed for the delay in deliveries to the
customers.

U

)

1.1 What did we do about it

Switching on the LCD projector, using Excel as a
structured notepad, we started analysing the extent
of the problem, listing the work-packages waiting in
the pile. | asked the senior tester to estimate the
number of days he would need to complete the
required testing of all the packages in the pile,
focusing on his part of the work being the
bottleneck. We added up all his estimates and
arrived at 106 days of work (Table 1).

This would mean that some customers would have
to wait for about half a year before getting the
solution to their problem, while during this time the
developers would produce an even bigger pile,
worsening the situation even further. This was
clearly unacceptable. Indeed, there was a problem!
The tester was sitting there, feeling not happy at all.
Instead of complaining about a problem, we’d better
do something about it. So, this is what we did:

Line |Activity Estim |Altern|Junior| Devel | Custo | Will be done
ative |tester| op | mer | (now=22Feb)
1 |Package1 17 2 17 4 HT
2 |Package 2 8 10 Chrt
3 |Package 3 14 5 4 BMC
4 |Package 4 (wait for feedback) 1 McC?
5 |Packages 9 3 5 Ast
6 |Package 6 17 3 10 10 ?
7 |Package 7 4 1 3 Cli
8 |Package 8.1 1 1 Sev
9 |Package 8.2 1 1 ?
10 |Package 8.3 1 1 Chrt 24 Feb
11 |Package 8.4 1 1 Chrt
12 |Package 8.5 1.1 1.1 Yet 28 Feb
13 |Package 8.6 3 3 Yet 24 Mar
14 |Package 8.7 0.1 0.1 cli After 8.5 OK
15 |Package 8.8 18 18 Ast
totals 106 47 32 36

Table 1: Slightly simplified and anonymised image of the actual spreadsheet how we deal
with the QA problem”. Objectifying and quantifying the problem is a first step to the solution.

Niels Malotaux - Help! We have a QA Problem!



e We made it clear to the senior tester that he still
had the responsibility to sign-off for delivery to a
customer, only if he was sure that the customer
would be made happy with the delivery. No
dilution of quality!

e We decided that the developers were to stop
developing, and that ‘the whole company’,
especially the developers would be at the tester’s
disposal, as necessary. If he’d need the CEO to do
anything for him, we would make the CEO
available

e We asked the senior tester to imagine what the
developers could do for him, like test automation,
making test scripts, testing or whatever. The aim
was to relieve the senior tester, being the
bottleneck, from as much work as possible. He
would still have to oversee the work of the
others, making sure that they would be doing the
right things, and checking their results

e We now asked him to estimate again: how much
time would he need for the various packages and
how much time did he estimate the developers
would need (not to make the developers a
bottleneck)

Adding up his estimates showed that he still would
need 47 days, or about 10 weeks.

1.2 Some refinement

Until now, we had only worked with work-packages
of about 10 days each. As an example for more
detailed planning, | asked which package had the
most pressing customers waiting. We split this
package into smaller elements, estimated these
elements, and listed which customer was waiting for
which components of this package (Table 1,
Package 8).

The table shows the (slightly simplified) spreadsheet
that emerged, the numbers being real, but the actual
names of the packages and of the customers
anonymised. Note that, strange as it may sound, the
exactness and even the correctness of all of these
numbers is not important at this stage: Adding
numbers averages out variance, and o™ order
approximation (ballpark figures) is usually sufficient
for decision making. If more detail or ‘exactness’

doesn’t yield a better decision, we shouldn’t waste
time on the extra detail. The actualisation of the
numbers happened in the subsequent weekly
plannings.

1.3 Planning and result

Now we could start planning what to do in which
order, systematically making customers happy, one
by one. Note that we don’t have to provide every
customer with their full solution immediately. After
all, customers need time to digest what they get, so
we could plan to dose component by component to
selected customers in a regular fashion, based on
customers’ real needs.

The basic plan | showed, was bi-weekly deliveries as
shown in Figure 1. Within two weeks, one customer
could be made happy. Two weeks later, two more
customers, and so on. In reality, customers were
made happy even faster, because useful test results
came out much more often. Based on our planning,
we would send the customers a message: “We’ll
have your solution at that date. Will you be ready for
it?”, checking the eagerness and preparedness of
the customer for the delivery. We were optimising
our delivery process, and if customers were not
activated appropriately at the same time, our
improvements would not make much sense.

The senior tester started to plan all the other
packages in some more detail in a similar fashion as
we did in the example, putting them on the timeline
while synchronising with the developers for their
share, and customers for their acceptance ability,
aiming at optimum customer satisfaction. They
started based on this plan, and 9 weeks later the pile
was gone. Customers were amazed about the
change, got more confident of our capabilities, and
started ordering more products. One year later
people told me that sales had increased by 70%.

The senior tester felt empowered and revived. He
kept planning the testing activities in the same
fashion ever since, now making sure that the testers
kept up with development. Two years later, he got
promoted to the position of product manager, still
coaching his successors in the planning technique.
An interesting by-product of the exercise was that

the  developers, having

week actually been involved with

: 9 , 10 i, 1, 12 i 13, 14 i, 15 |, 16 i 17 18 i testing, now were much
start delivery delivery delivery delivery (all more aware to improve the
cust a cust b,c cust a,d cust c,e done) testability of their fruits of

Figure 1: Basic idea of the TimeLine plan, later detailed into more Deliveries

work.

www.malotaux.nl/booklets



2  What did we do?

In order to achieve the result described, we used
what we call Evolutionary Planning techniques. The
Evolutionary technique is based on constant
improvement of whatever we do, using the Plan-Do-
Check-Act or Deming cycle. In the Plan phase we
decide what we should achieve, and how we most
efficiently and effectively will achieve it. In the Do
phase we follow the plan. In the Check phase we
check whether the result was as planned, and
whether the way we achieved the result was as
planned. If yes, we think how we can do it better the
next time. If no, we think how we can do it better the
next time. The Act phase is the crucial and mostly
forgotten one: deciding what to do differently the
next time, because if we keep doing things the same
way, the result will not be different, let alone better.
By creating mutations in how we do things, we
provoke evolution. And because as humans we can
imagine the impact of the changes we introduce, we
can move the evolution quickly to improvement,
rather than random change. In Evolutionary
Planning, we currently use (note that the process is
also evolutionary, so it may change based on
evolving experience!) [Malog], [Mal10]:

o TaskCycles to organize the work and to
continuously improve the way we spend our time

o DeliveryCyclesto deliver to stakeholders either to
make them happy early, or to find out what will
make them happy. This is to check the
(perceived) requirements and the assumptions,
many of which are often incorrect. In the
DeliveryCycle we aim to get feedback to find out
whether we are on the right track to success, and
to find out as quickly as possible when we are not
on the right track. This way, we have to redo as
little as possible, wasting as little time as possible

o TimeLine to get and keep control over longer
periods of time: predicting what will happen if we
don’t change our ways and to find alternative
strategies to do better things, and to do things
better

2.1 Timeline

In the case of the “QA problem” we started doing a
Check phase, first studying the current situation and
what would happen if we just would continue
unaltered. We made a list of what we thought we
had to do, and made rough estimates (in this case
activities between 5 to 15 days). Before we started,
the testers and their manager had a feeling that
there was a lot of work to do, more than they could

handle in an acceptable period of time. Once we
quantified the problem, we knew (sufficiently
accurately) how much work there was, showing the
nature and the size of the bottleneck and not liking
what we saw. We realised that going on unaltered
was an unacceptable option. We had to do
something differently, in this case using the
developers as a temporary extension of the testing
department. We quantified this scenario and arrived
at a much more acceptable strategy.

Summarizing the TimeLine technique:

e Cutting what we think we have to do into up to
20 chunks (packages, activities) and estimating
these chunks. Adding up the estimates usually
provides sufficient evidence that we need more
time than we have available. At this point, most
projects decide that they simply need more time,
or complain that management is imposing
impossible deadlines

e With Evolutionary Planning, however, we don’t
stop here, but think of alternative strategies of
doing things, doing different things, or doing
things differently. We estimate the impact on the
result and choose the optimum strategy. Now we
have well-founded arguments to explain
management why things will take as much as
they still will do

* Now the chosen strategy is planned, focused on
the optimum order of implementing the
optimum solution, still being aware that
“optimum” gradually may change by advancing
understanding. It’s of no use continuing an initial
plan once we see that it should be changed.
That’s why we have to continuously keep using
the Plan-Do-Check-Act technique, with the
Business Case as a reference

e Now we can start predicting what will be done
when, based on the estimates and subsequent
calibration to reality. This provides the business
with quite reliable predictions, allowing them to
provide reliable predictions to their customers

Table 2 shows a simplified example of a TimeLine
table, stating the Activity-description, the estimate,
the time already spent and the time still to spend,
the ratio of real and estimated time, the calibration
factor (ratio of total real time and estimated time
during a past period), the resulting calibrated (‘real’)
time still to spend and the resulting dates.
If in this example the project has to be concluded on
5 June, we now can say that Activities 17 and 18
won’t be done at that deadline, unless we do

3

Niels Malotaux - Help! We have a QA Problem!



something differently. This way, we can very early in
a project predict what will be done when, and take
the consequence of the prediction, rather than
sticking our head in the sand until reality hits us
somewhere.

3 What does all this have to do with
Testing or QA?

Just like development, testing can also improve
productivity enormously by using Evolutionary
Planning techniques. Testers often complain that at
the end of the project they don’t get enough time to
do proper testing, the developers always being late
and the end-date never being adjusted, squeezing
the remaining time available for testing. Just like in
the above example, testers shouldn’t complain
about this, but rather think what they can do about
it. The solution is simple: don’t wait until the end to
start with testing, but start testing right from the
start. Review the business case, review the
requirements, review the architecture and design,
review whatever code is being produced as the
project progresses, all the time providing quick
feedback to the developers, so that the developers
canrepair the mistakes already made, and learn from
them to prevent making these and similar mistakes
anymore, saving a lot of time. This way, testing
needs hardly any extra time after the developers

have finished, minimizing the delay because of
testing.

3.1 Who is the customer of Testing and QA?

Deming [Dem86] explained (slightly modified for
testing):

“Quality comes not from testing, but from
improvement of the development process. Testing
does not improve quality, nor guarantee quality.
It’s too late. The quality, good or bad, is already in the
product. You cannot test quality into a product.”
Once we understand this, it’s inevitable to recognize
that the main customer of QA and of the testers is
development. For most testers, this is quite a
paradigm shift!

The developers are to put the right quality into the
product. If the developers are humble enough to
admit, that, just like other people, they make
mistakes, they can ask the testers to help them
finding out where they are still making mistakes, in
order to learn how to prevent making these
mistakes ever more. The testers of course keep
trying to find the remaining mistakes, because
feeding these back to development leads to ever
better results.

If we recognize that testing should run along with
development, where the developers are the
customer, and the customer has to be supplied with
what they need, at the time they need it, to be

Line |Activity Estim | Spent | Still to | Ratio | Calibr | Calibr Date
spend |real/es | factor | still to done
1 |Activity 1 2 2 o] 1.0
2 |Activity 2 5 5 1 1.2 1.0 1 30 Mar 2009
3 |Activity 3 ] 3 o 3.0 Calibration factor:
4 |Activity 4 2 3 2 2.5 1.0 2 1Apr2009 Spent+StiIIToSpend: 21 =14
5 |Activity 5 5 4 1 1.0 1.0 1 2 Apr 2009 Estimated 15
6 |Activity 6 3 1.4 4.2 9 Apr 2009
7 |Activity 7 1 1.4 1.4 10 Apr 2009
8 |Activity 8 3 1.4 4.2 | 16 Apr2009
V) v
16 |Activity 16 4 1.4 5.6 2 Jun 2009
-1-7-Zc-tn71t;/1-7 ..... _._.5_._._ ....... I I --1:}---76--1-1J-u55059-
18 |Activity 18 7 1.4 9.8 | 25Jun 2009

Table 2: A simplified TimeLine sheet, indicating what will be done when based on estimates and a calibrated
future. It also shows what will not be done at a certain date, giving us early warnings: on 5 June, based on our
current knowledge, Activities 17 and 18 won’t be done. The earlier we get a warning, the more time we have to
do something about it. Some notes: In this table we don’t calibrate ‘Still-to-Spend’ (using calibration factor 1.0),
because of assumed improved insight with Tasks almost done. Activities not yet started are calibrated by the
ratio of Spent plus Still to Spend and the original estimates. Apparently, this is a snapshot of 29 March.

www.malotaux.nl/booklets



satisfied, and to be more successful than without us
as testers, then testing can also use all the
Evolutionary Project Planning techniques that
development is already using. TaskCycles to
organize and optimize the work, DeliveryCycles to
see whether testing is doing the right job, and
TimeLine to check that we are keeping in sync with
development, not to unnecessarily delay the result.
If testing isn’t well aware of their actual customer,
they are probably doing some things not right.
Looking at the developers’ weekly (TaskCycle)
planning, the testers know exactly what the
developers will have done by the end of any week,
so during that week they can plan exactly what and
how to test in the following week, immediately upon
delivery by the developers, not wasting any time.
More explanation in [Malos].

3.2 Evolutionary project management

Evolutionary Planning is one of the Evolutionary
Project Management techniques, which
evolutionarily have evolved based on actively and
very frequently using the Plan-Do-Check-Act or
Deming cycle, which is actually a continuous root-
cause-analysis-plus-consequence (Act!) technique.
Some people fear that these techniques will cost a
lot of extra time. Recently a Project Manager said:
“Do | have to do root-cause-analysis on all defects
found? | can’t spend that amount of time!”
Apparently he thought he did have enough time to
repair all the repeated defects that kept coming in,
rather than preventing most of them. Experience in
numerous projects proves that using these
techniques, projects can quickly learn to conclude
projects more successful, in significantly shorter
time. A lot of time can be saved, both in
development and testing, but we have to actively
start looking for it. Evolutionary Project
Management techniques help people doing this.
Elements of these techniques are:
e Plan-Do-Check-Act - the powerful ingredient for
continuous learning and success
o Zero-Defects as an attitude - preventing half of
the defects overnight [Cro84]
e Business Case - to define why we are doing the
project
» Requirements Engineering - to define what we
are supposed to achieve and what not, using
quantification to define how much better
performance we are supposed to achieve [Gil88],
[Gilos]

e Architecture and Design - selecting the optimum
compromise for the conflicting requirements
(requirements are always conflicting: e.g.
performance <> budget)

e Early Review & Inspection - measuring quality
while doing, quickly learning to prevent injecting
defects

o Weekly TaskCycle - short term planning,
optimizing estimation, promising what we can
achieve, and then living up to our promises

o Bi-weekly DeliveryCycle - optimizing the
requirements, and checking the assumptions,
soliciting feedback by delivering real results to
eagerly waiting stakeholders

e Timeline - getting and keeping control of Time:
predicting the future, doing something with that
knowledge, and feeding program/portfolio/
resource management with quite reliable results

More details can be read in [Gil88], [Gilo5], [Mal10]
and [Malog]. With this paper | hope to have shown
that testing can be planned just as any other project,
using the same Evolutionary techniques we
developed for development, to improve the
performance of the tester’s contributions to the
success of the project, resulting in happy customers
and hence in better revenues for the organization,
ultimately for all people involved.

References

[Cro84] P.B. Crosby: Quality Without Tears, McGraw-
Hill, 1984, ISBN 0070145113

[Dem86] W.E. Deming: Out of the Crisis, MIT, 1986,

ISBN 0911379010

T. Gilb: Principles of Software Engineering

Management, Addison-Wesley, 1988,

ISBN 0201192462

T. Gilb: Competitive Engineering, Elsevier,

2005, ISBN 0750665076

N.R. Malotaux: Optimizing the Contribution

of Testing to Project Success, 2005,

www.malotaux.eu/booklets - booklet#3

N.R. Malotaux: Evolutionary Planning or

How to Achieve the Most Important

Requirement, 2009

www.malotaux.eu/booklets - booklet#7

N.R. Malotaux: Predictable Projects - How to

deliver the Right Results at the Right Time,

2009

www.malotaux.eu/booklets - booklet#9

[Gil88]

[Gilos]

[Malos]

[Malog]

[Mal10]

Niels Malotaux - Help! We have a QA Problem!






Niels Malotaux

Help ! We have a QA Problem !

This is about a real case of too many developers feeding too few testers, causing a testing backlog of half a
year, with many angry customers waiting for too long for solutions to their problems. One senior tester just
had left the company. There was only one senior and one junior tester left. They were facing this huge backlog
of work and didn’t know where to start.

We will show how empowerment of the testers, careful planning, and involvement of the developers allowed
the testers to catch up in about 9 weeks, systematically making customers happy one by one along the way.
The senior tester learnt how to plan the work of the testers effectively and efficiently in sync with the
developers, so that there were no backlogs ever since. Trust by customers who were abandoning the supplier
was restored, causing turnover to grow enormously since.

We will first show how we used Evolutionary Planning techniques in this particular case. Then we will discuss
in more general terms the elements of this planning technique.

Niels Malotaux is an independent Project Coach specializing in optimizing project performance. Since 1974 he
designed electronic hardware and software systems, at Delft University, in the Dutch Army, at Philips
Electronics, and 20 years leading his own systems design company. Since 1998 he devotes his expertise to
helping projects to deliver Quality on Time: delivering what the customer needs, when he needs it, to enable
customer success. To this effect, Niels developed an approach for effectively teaching Evolutionary Project
Management (Evo) Methods, Requirements Engineering, and Review and Inspection techniques. Since 2001
he taught and coached over 400 projects in 40+ organizations in the Netherlands, Belgium, China, Germany,
India, Ireland, Israel, Japan, Romania, South Africa, Serbia, the UK, and the US, which led to a wealth of
experience in which approaches work better and which work less in the practice of real projects. He is a
frequent speaker at conferences, see www.malotaux.eu/conferences

Find more booklets at: www.malotaux.eu/booklets

1. Evolutionary Project Management Methods

2. How Quality is Assured by Evolutionary Methods

3. Optimizing the Contribution of Testing to Project Success

3. Optimizing Quality Assurance for Better Results (same as 3, but now for non-software projects)
4. Controlling Project Risk by Design

5. TimeLine: Getting and Keeping Control over your Project

6. Recognizing and Understanding Human Behaviour

7. Evolutionary Planning (similar to booklet#5 TimeLine, but other order, and added predictability)
8

9

. Help! We have a QA problem! (this booklet)
. Predictable Projects - How to deliver the Right Results at the Right Time (newer description)

N R Malotaux

Consultancy

Niels R. Malotaux

phone +31-655 753 604
mail  niels@malotaux.eu
web www.malotaux.eu

Originally prepared for the Conquest 2009 Conference, Nuremberg, Germany
Version 1.5 (some commas, links checked)- 26 Nov 2025


http://www.malotaux.eu/booklets

