

Niels Malotaux

Niels Malotaux - Help! We have a QA Problem! 1

Niels Malotaux

1 The problem
I got a phone call from a R&D manager: “We have a
QA problem! Can you help?” In most cases this
means that they think they have a testing problem,
and this case was not different: One senior tester
just had left the company because he had
complained about his salary and the remaining
senior tester was starting to complain as well. This
may be difficult for others to understand, but
engineers in general like their work, and if they
start complaining about the salary, something is
very wrong in the organisation. The senior tester,
with only one junior tester to assist, was paralysed
by the pile of work in front of him. Some 15
developers producing hardware, firmware and
software caused the pile to grow faster than the
remaining testers could handle. Customers were
waiting too long for solutions to their problems,
becoming really impatient, and getting in the
process of abandoning this supplier in favour of the
competition. As often is the case, the testers were
blamed for the delay in deliveries to the customers.

1.1 What did we do about it

Switching on the LCD projector, using Excel as a
structured notepad, we started analysing the
extent of the problem, listing the work-packages
waiting in the pile. I asked the senior tester to
estimate the number of days he would need to
complete the required testing of all the packages in
the pile, focusing on his part of the work being the
bottleneck. We added up all his estimates and
arrived at 106 days of work (Table 1).

This would mean that some customers would have
to wait for about half a year before getting the
solution to their problem, while during this time the
developers would produce an even bigger pile,
worsening the situation even further. This was
clearly unacceptable. Indeed there was a problem!
The tester was sitting there, feeling not happy at
all. Instead of complaining about a problem, we’d
better do something about it. So, this is what we
did:

Line Activity Estim Altern
ative

Junior
tester

Devel
op

Custo
mer

Will be done
(now=22Feb)

1 Package 1 17 2 17 4 HT
2 Package 2 8 5 10 Chrt
3 Package 3 14 7 5 4 BMC
4 Package 4 (wait for feedback) 11 McC?
5 Package 5 9 3 5 Ast
6 Package 6 17 3 10 10 ?
7 Package 7 4 1 3 Cli
8 Package 8.1 1 1 Sev
9 Package 8.2 1 1 ?
10 Package 8.3 1 1 Chrt 24 Feb
11 Package 8.4 1 1 Chrt
12 Package 8.5 1.1 1.1 Yet 28 Feb
13 Package 8.6 3 3 Yet 24 Mar
14 Package 8.7 0.1 0.1 Cli After 8.5 OK
15 Package 8.8 18 18 Ast

 totals 106 47 32 36

Table 1: Slightly simplified and anonymised image of the spreadsheet how we dealt with the „QA problem“.
Objectifying and quantifying the problem is a first step to the solution.

2 www.malotaux.nl/booklets

• We made it clear to the senior tester that he still
had the responsibility to sign-off for delivery to a
customer only if he was sure that the customer
would be made happy with the delivery. No
dilution of quality!

• We decided that the developers were to stop
developing, and that ‘the whole company’,
especially the developers would be at the
tester’s disposal, as necessary. If he’d need the
CEO to do anything for him, we would make the
CEO available

• We asked the senior tester to imagine what the
developers could do for him, like test
automation, making test scripts, testing or
whatever. The aim was to relieve the senior
tester, being the bottleneck, from as much work
as possible. He would still have to oversee the
work of the others, making sure that they would
be doing the right things and checking their
results

• We now asked him to estimate again: how much
time would he need for the various packages
and how much time did he estimate the
developers would need (not to make the
developers a bottleneck)

Adding up his estimates showed that he still would
need 47 days, or about 10 weeks.

1.2 Some refinement

Until now, we had only worked with work-
packages of about 10 days each. As an example for
more detailed planning, I asked which package had
the most pressing customers waiting. We split this
package into smaller elements, estimated these
elements and listed which customer was waiting
for which components of this package (Table 1,
Package 8).

The table shows the (slightly simplified)
spreadsheet that emerged, the numbers being real,
but the actual names of the packages and of the
customers anonymised. Note that, strange as it
may sound, the exactness and even the correctness
of all of the numbers is not so important at this
stage: Adding numbers averages out variance and
0th order approximation (ballpark figures) is usually

sufficient for decision making. If more detail or
‘exactness’ doesn’t yield a better decision, we
shouldn’t waste time on the extra detail. The
actualisation of the numbers happened in the
subsequent weekly plannings.

1.3 Planning and result
Now we could start planning what to do in which
order, systematically making customers happy, one
by one. Note that we don’t have to provide every
customer with his full solution immediately. After
all, customers need time to digest what they get,
so we could plan to dose component by
component to selected customers in a regular
fashion, based on customer’s real needs.
The basic plan, with bi-weekly deliveries looked as
shown in Figure 1. Within two weeks, one customer
would be made happy. Two weeks later, two more
customers, and so on. In reality, customers were
made happy even faster, because useful test
results came out much more often. Based on our
planning, we would send the customers a message:
“We’ll have your solution at that date. Will you be
ready?”, checking the eagerness and preparedness
of the customer for the delivery. We were
optimising our delivery process, and if customers
were not activated appropriately at the same time,
our improvements would not make much sense.
The senior tester started to plan all the other
packages in some more detail in a similar fashion as
we did in the example, putting them on the
timeline while synchronising with the developers
for their share, and customers for their acceptance
ability, aiming at optimum customer satisfaction.
They started based on this plan, and 9 weeks later
the pile was gone. Customers were amazed about
the change, got more confident of our capabilities
and started ordering more products. One year later
people told me that sales had increased by 70%.
The senior tester felt empowered and revived. He
kept planning the testing activities in the same
fashion ever since, now making sure that the
testers kept up with development. Today, two
years later, he is promoted to the position of
product manager, still coaching his successors in
the planning technique. An interesting by-product

of the exercise was that the
developers, having actually
been involved with testing,
now were much more
aware to improve the
testability of their fruits of
work.

Figure 1: Basic idea of the TimeLine plan, later detailed into more Deliveries

start delivery
cust a

delivery
cust b,c

delivery
cust a,d

delivery
cust c,e

(all
done)

week
9 11 10 12 13 14 15 16 17 18

Niels Malotaux - Help! We have a QA Problem! 3

2 What did we do?
In order to achieve the result described, we used
what we call Evolutionary Planning techniques. The
Evolutionary technique is based on constant
improvement of whatever we do using the Plan-Do-
Check-Act or Deming cycle. In the Plan phase we
decide what we should achieve and how we most
efficiently and effectively will achieve it. In the Do
phase we follow the plan. In the Check phase we
check whether the result was as planned and
whether the way we achieved the result was as
planned. If yes, we think how we can do it better
the next time. If no, we think how we can do it
better the next time. The Act phase is the crucial
and mostly forgotten one: deciding what to do
differently the next time, because if we keep doing
things the same way, the result will not be
different, let alone better. By creating mutations in
how we do things, we provoke evolution and
because as humans we can imagine the impact of
the changes we introduce, we can move the
evolution quickly to improvement rather than
random change. In Evolutionary Planning, we
currently use (note that the process is also
evolutionary, so it may change based on evolving
experience!) [Mal04], [Mal09]:
• TaskCycles to organize the work and to

continuously improve the way we spend our
time

• DeliveryCycles to deliver to stakeholders either
to make them happy early, or to find out what
will make them happy. This is to check the
(perceived) requirements and the assumptions,
many of which are often wrong. In the
DeliveryCycle we aim to get feedback to find out
whether we are on the right track to success,
and to find out as quickly as possible when we
are not on the right track. This way, we have to
redo as little as possible, wasting as little time as
possible

• TimeLine to get and keep control over longer
periods of time: predicting what will happen if
we don’t change our ways and to find
alternative strategies to do better things and to
do things better

2.1 TimeLine

In the case of the “QA problem” we started doing a
Check phase, first studying the current situation
and what would happen if we just would continue
unaltered. We made a list of what we thought we
had to do, and made rough estimates (in this case

activities between 5 to 15 days). Before we started,
the testers and their manager had a feeling that
there was a lot of work to do, more than they could
handle in an acceptable period of time. Once we
quantified the problem, we knew (sufficiently
accurately) how much work there was, showing
the nature and the size of the bottleneck and not
liking what we saw. We realised that going on
unaltered was an unacceptable option. We had to
do something differently, in this case using the
developers as a temporary extension of the testing
department. We quantified this scenario and
arrived at a much more acceptable strategy.

Summarizing the TimeLine technique:
• Cutting what we think we have to do into up to

20 chunks (packages, activities) and estimating
these chunks. Adding up the estimates usually
provides sufficient evidence that we need more
time than we have available. At this point, most
projects decide that they simply need more
time, or complain that management is imposing
impossible deadlines

• With Evolutionary Planning, however, we don’t
stop here, but think of alternative strategies of
doing things, doing different things or doing
things differently. We estimate the impact on
the result and choose the optimum strategy.
Now we have well-founded arguments to
explain management why things will take as
much as they still will do

• Now the chosen strategy is planned focused on
the optimum order of implementing the
optimum solution, still being aware that
“optimum” gradually may change by advancing
understanding. It’s of no use continuing an
initial plan once we see that it should be
changed. That’s why we have to continuously
keep using the Plan-Do-Check-Act technique,
with the Business Case as a reference

• Now we can start predicting what will be done
when, based on the estimates and subsequent
calibration to reality. This provides the business
with quite reliable predictions, allowing them to
provide reliable predictions to their customers

Table 2 shows a simplified example of a TimeLine
table, stating the Activity-description, the estimate,
the time already spent and the time still to spend,
the ratio of real and estimated time, the calibration
factor (ratio of total real time and estimated time
during a past period), the resulting calibrated
(‘real’) time still to spend and the resulting dates.

4 www.malotaux.nl/booklets

If in this example the project has to be concluded
on 5 June, we now can say that Activities 17 and 18
won’t be done at that deadline, unless we do
something differently. This way, we can very early
in a project predict what will be done when and
take the consequence of the prediction, rather
than sticking our head in the sand until reality hits
us somewhere.

3 What does all this have to do with
Testing or QA?

Just like development, testing can also improve
productivity enormously by using Evolutionary
Planning techniques. Testers often complain that at
the end of the project they don’t get enough time
to do proper testing, the developers always being
late and the end-date never being adjusted,
squeezing the remaining time available for testing.
Just like in the above example, testers shouldn’t
complain about this, but rather think what they can
do about it. The solution is simple: don’t wait until
the end of the project to start with testing, but
start testing right from the start. Review the
business case, review the requirements, review the
architecture and design, review whatever code is
being produced as the project progresses, all the
time providing quick feedback to the developers,
so that the developers can repair the mistakes

already made and learn from them to prevent
making these and similar mistakes anymore, saving
a lot of time. This way, testing needs hardly any
extra time after the developers have finished,
minimizing the delay of the project because of
testing.

3.1 Who is the customer of Testing and QA?

Deming [Dem86] explained (slightly modified for
testing):
“Quality comes not from testing, but from
improvement of the development process. Testing
does not improve quality, nor guarantee quality.
It’s too late. The quality, good or bad, is already in
the product. You cannot test quality into a product.”
 Once we understand this, it’s inevitable to
recognize that the main customer of QA and of the
testers is development. For most testers, this is
quite a paradigm shift!
The developers are to put the right quality into the
product. If the developers are humble enough to
admit that, just like other people, they make
mistakes, they can ask the testers to help them
finding out where they are still making mistakes, in
order to learn how to prevent making these
mistakes ever more. The testers of course keep
trying to find the remaining mistakes, because
feeding these back to development leads to even
better results.

Line Activity Estim Spent Still to
spend

Ratio
real/es

Calibr
factor

Calibr
still to

Date
done

1 Activity 1 2 2 0 1.0
2 Activity 2 5 5 1 1.2 1.0 1 30 Mar 2009
3 Activity 3 1 3 0 3.0
4 Activity 4 2 3 2 2.5 1.0 2 1 Apr 2009
5 Activity 5 5 4 1 1.0 1.0 1 2 Apr 2009
6 Activity 6 3 1.4 4.2 9 Apr 2009
7 Activity 7 1 1.4 1.4 10 Apr 2009
8 Activity 8 3 1.4 4.2 16 Apr 2009
↓ ↓
16 Activity 16 4 1.4 5.6 2 Jun 2009
17 Activity 17 5 1.4 7.0 11 Jun 2009
18 Activity 18 7 1.4 9.8 25 Jun 2009

Table 2: Simplified TimeLine sheet, indicating what will be done when based on estimates and a calibrated
future. It also shows what will not be done at a certain date, giving us early warnings: on 5 June, Activities 17
and 18 won’t be done. The earlier we get a warning, the more time we have to do something about it. Some
notes: In this table we don’t calibrate ‘Still-to-Spend’ (by using calibration factor 1.0), because of assumed
improved insight with Tasks almost done. Activities not yet started are calibrated by the ratio of Spent plus Still
to Spend and the original estimates. Apparently, this is a snapshot of 29 March.

Niels Malotaux - Help! We have a QA Problem! 5

If we recognize that testing is a project that should
run along with the development project, where the
developers are the customer, and the customer has
to be supplied with what he needs, at the time he
needs it, to be satisfied and to be more successful
than without us as testers, the testing project can
also use all the Evolutionary Project Planning
techniques that development is already using.
TaskCycles to organize and optimize the work,
DeliveryCycles to see whether testing is doing the
right job, and TimeLine to check that we are
keeping in sync with development, not to
unnecessarily delay the project. If testing isn’t well
aware of their actual customer, they are probably
doing some things not right.
Looking at the developers’ weekly (TaskCycle)
planning, the testers know exactly what the
developers will have done at the end of any week,
so during that week they can plan exactly what and
how to test in the following week, immediately
upon delivery by the developers, not wasting any
time. More explanation in [Mal05].

3.2 Evolutionary project management

Evolutionary Planning is one of the Evolutionary
Project Management techniques, which
evolutionarily have evolved based on actively and
very frequently using the Plan-Do-Check-Act or
Deming cycle, which is actually a continuous root-
cause-analysis-plus-consequence (Act!) technique.
Some people fear that these techniques will cost a
lot of extra time. Recently a Project Manager said:
“Do I have to do root-cause-analysis on all defects
found? I can’t spend that amount of time!”
Apparently he thought he did have enough time to
repair all the repeated defects that kept coming in,
rather than preventing most of them. Experience in
numerous projects proves that using these
techniques, projects can quickly learn to conclude
projects more successful in significantly shorter
time. A lot of time can be saved, both in
development and testing, but we have to actively
start looking for it. Evolutionary Project
Management techniques help people doing this.
Elements of these techniques are:
• Plan-Do-Check-Act - the powerful ingredient for

continuous learning and success
• Zero-Defects as an attitude - preventing half of

the defects overnight [Cro84]
• Business Case - to define why we are doing the

project

• Requirements Engineering - to define what we
are supposed to achieve and what not, using
quantification to define how much better
performance we are supposed to achieve
[Gil88], [Gil05]

• Architecture and Design - selecting the optimum
compromise for the conflicting requirements
(requirements are always conflicting: e.g.
performance <> budget)

• Early Review & Inspection - measuring quality
while doing, quickly learning to prevent injecting
defects

• Weekly TaskCycle - short term planning,
optimizing estimation, promising what we can
achieve and then living up to our promises

• Bi-weekly DeliveryCycle - optimizing the
requirements and checking the assumptions,
soliciting feedback by delivering real results to
eagerly waiting stakeholders

• TimeLine - getting and keeping control of Time:
predicting the future, doing something with that
knowledge, and feeding program/portfolio/
resource management with quite reliable results

More details can be read in [Gil88], [Gil05], [Mal04]
and [Mal09]. With this paper I hope to have shown
that testing can be planned just as any other
project, using the same Evolutionary techniques we
developed for development, to improve the
performance of the tester’s contributions to the
success of the project, resulting in happy
customers and hence in better revenues for the
organization, ultimately for all people involved.

References
[Cro84] P.B. Crosby: Quality Without Tears,

McGraw-Hill, 1984, ISBN 0070145113
[Dem86] W.E. Deming: Out of the Crisis, MIT, 1986,

ISBN 0911379010
[Gil88] T. Gilb: Principles of Software Engineering

Management, Addison-Wesley, 1988,
ISBN 0201192462

[Gil05] T. Gilb: Competitive Engineering, Elsevier,
2005, ISBN 0750665076

[Mal04] N.R. Malotaux: How Quality is Assured by
Evolutionary Methods, 2004
www.malotaux.nl/booklets - booklet#2

[Mal05] N.R. Malotaux: Optimizing the Contribution
of Testing to Project Success, 2005,
www.malotaux.nl/booklets - booklet#3

[Mal09] N.R. Malotaux: Evolutionary Planning or
How to Achieve the Most Important
Requirement, 2009
www.malotaux.nl/booklets - booklet#7

Niels Malotaux

This is about a real case of too many developers feeding too few testers, causing a testing backlog of half a
year, with many angry customers waiting for too long for solutions to their problems. One senior tester just
had left the company. There was only one senior and one junior tester left. They were facing this huge
backlog of work and didn’t know where to start.
We will show how empowerment of the testers, careful planning and involvement of the developers
allowed the testers to catch up in about 9 weeks, systematically making customers happy one by one along
the way. The senior tester learnt how to plan the work of the testers effectively and efficiently in sync with
the developers, so that there were no backlogs ever since. Trust by customers who were in the process of
abandoning the supplier was restored causing turnover to grow enormously since.
We will first show how we used Evolutionary Planning techniques in this particular case. Then we will discuss
in more general terms the elements of this planning technique.

Niels Malotaux is an independent Project Coach specializing in optimizing project performance. Since 1974
he designed electronic hardware and software systems, at Delft University, in the Dutch Army, at Philips
Electronics and 20 years leading his own systems design company. Since 1998 he devotes his expertise to
helping projects to deliver Quality On Time: delivering what the customer needs, when he needs it, to
enable customer success. To this effect, Niels developed an approach for effectively teaching Evolutionary
Project Management (Evo) Methods, Requirements Engineering, and Review and Inspection techniques.
Since 2001 he taught and coached over 400 projects in 40+ organizations in the Netherlands, Belgium, China,
Germany, India, Ireland, Israel, Japan, Romania, South Africa, Serbia, the UK, and the US, which led to a
wealth of experience in which approaches work better and which work less in the practice of real projects.
He is a frequent speaker at conferences, see www.malotaux.nl/conferences

Find more booklets at: www.malotaux.nl/booklets
1. Evolutionary Project Management Methods
2. How Quality is Assured by Evolutionary Methods (this booklet)
3. Optimizing the Contribution of Testing to Project Success
3a. Optimizing Quality Assurance for Better Results (same as 3, but now for non-software projects)
4. Controlling Project Risk by Design
5. TimeLine: Getting and Keeping Control over your Project
6. Recognizing and Understanding Human Behaviour
7. Evolutionary Planning (similar to booklet#5 TimeLine, but other order and added predictability)
8. Help! We have a QA problem!
ETA: Evo Task Administration tool - www.malotaux.nl/?id=downloads#ETA

Originally prepared for the Conquest 2009 Conference, Nuremberg, Germany
Version 1.3 (reformatted, some typos, links checked, updated bio) - 30 Aug 2018

N R Malotaux
Consultancy
Niels R. Malotaux
phone +31-655 753 604
mail niels@malotaux.nl
web www.malotaux.nl

