Inspection used in various ways

www.malotaux.nl/conferences www.malotaux.nl/booklets www.malotaux.nl/inspections

Niels Malotaux

N R Malotaux Consultancy

+31-655 753 604

niels@malotaux.nl

www.malotaux.nl

Niels Malotaux

Project Coach

Helping projects and organizations very quickly to become

- More effective doing the right things better
- Result Management More efficient – doing the right things better in less time
- Predictable delivering as predicted

Getting projects back on track,

Lean Quality Assurance

- What is Lean? (better read the source: Taiichi Ohno) or <u>www.malotaux.nl/essenceoflean</u>
- What is Quality ?
- How do you get Quality ?
- What is the required Quality level ?
- How do you measure Quality ?
- How to assure Quality ?
- What is Quality Assurance ?

Who is the (main) customer of Testing and QA?

- Deming:
 - Quality comes not from testing, but from improvement of the development process
 - Testing does not improve quality, nor guarantee quality
 - It's too late

Deming (1900-1993)

- The quality, good or bad, is already in the product
- You cannot test quality into a product
- Who is the main customer of Testing and QA?
- What do we have to deliver to these customers? What are they waiting for ?
- Testers and QA are consultants to development
- Testing and QA shouldn't delay the delivery How ?

Absolutes of Quality Crosby (1926-2001)

- Conformance to requirements
- Obtained through prevention
- Performance standard is zero defects
- Measured by the price of non-conformance Philip Crosby, 1970
- The purpose is customer success (not customer satisfaction)

Added by Philip Crosby Associates, 2004

The Absolutes of Quality Management

e	1	Quality has to be defined as conformance to requirements, not as goodness.
	2	The system for causing quality is prevention, not appraisal.
	3	The performance standard must be Zero Defects, not "that's close enough."
	4	The measurement of quality is the Price of Nonconformance", not indexes.
	5	The purpose of quality is to create customer success, not customer satisfaction.
		Philip Grosby (Associates
		- Stephensen & Stephensen & Stephensen

• We meet the agreed requirements

or

- Have the requirements changed to what we and the customer really need
- We create requirements with care and we meet them with care
- Does you management take quality seriously?

Phil Crosby

Philip Crosby

[Quality is Still Free]

- Conventional wisdom says that error is inevitable
- As long as the performance standard requires it, then this self-fulfilling prophecy will come true
- Most people will say: People are humans and humans make mistakes
- And people do make mistakes, particularly those who do not become upset when they happen
- Do people have a built-in defect ratio ?
- Mistakes are caused by two factors: lack of knowledge and lack of attention
- Lack of attention is an attitude problem

Root Cause Analysis

If a defect is found:

- Is Root Cause Analysis routinely performed?
- What is the Root Cause of a defect ?
- Cause: The error that caused the defect
- Root Cause:

What caused us to make the error that caused the defect

• Without proper RCA, we're doomed to repeat the same errors

Case: Can you teach Inspections ?

- Short intro
- Are you regularly reviewing ?
- Let's do it: baseline
 - Take a document
 - Reproduce one page
 - Do review
 - No issues
- One rule ('source')
 - Many issues

Datalog function improvement

DesignLog

- In computer, not loose notes, not in e-mails, not handwritten
 - Text
 - Drawings!
 - Chapter per subject
 - Initially free-format
 - For all to see
- All concepts contemplated
 - Requirement
 - Reasoning
 - Assumptions
 - Questions
 - Calculations
 - Possible solutions
 - Selection criteria
 - Choices:
 - If rejected: why?
 - If chosen: why?
- Implementation specification

Results

- No code until design-log reviewed
- You're delaying my project !
- Example
- Solution
- Thanks, you saved my project
- Now we can review to check the design before implementation
- Did I do the same ?
- Telling people to change: resistance
- How to let people change themselves ...

Malotaux - Gilb LeanQA2015

Case: Early Inspection on Requirements

Large e-business application with 8 requirements authors

- Each sent the first 8-10 requirements of estimated
 100 requirements per author
 (table format, about 2 requirements per page including all data)
- Initial reviews completed within a few hours of submission
- Authors integrated the suggestions and corrections, then continued to work
- Some authors chose additional reviews others did not
- Inspection performed on document to assess final quality level

Results Average major defects per requirement in initial review 8 Average major defects per requirement in final document 3 Time investment: 26 hr

- 12 hours in initial review (1.5 hrs per author)
- About 8 hours in additional reviews
- 6 hours in final inspection (2 hrs, 2 checkers, plus prep and debrief)

Major defects prevented: 5 per requirement in ~750 total

Saved 5 x 750 x 10 hr = 37500 hr / 3 = 12500 x \$50 = \$625000

ES

Malotaux - Gilb LeanQA2015

Case: Test Cases

A tester's improvement writing successive test plans

- Early Inspection used on an existing project to improve test plan quality
- Test plan nearly "complete", so we simulated Early Inspection
- First round: inspected 6 randomly-selected test cases
- Author notes systematic defects in the results, reworks the document accordingly (~32 hrs)
- Second round: inspected 6 more test cases: quality vastly improved
- Test plan exits the process and goes into production
- The author goes on to write another test plan

Results

First round	6 major defects per test case
Second round	0.5 major defects per test case

- Time investment: 2 hours in initial review, 36 hours total in final formal inspection, excluding rework
 (2 inspections, 4 hrs each, 4 checkers, plus preparation and debrief)
- Historically about 25% of all defects found by testing were closed as "functions as designed", still 2-4 hrs spent on each to find out
- This test plan yielded over 1100 software defects with only 1 defect (0.1 %) closed as "functions as designed"
- Time saved on the project: 500 1000 hrs (25% x 1100 x 2-4 hrs)

Defect Prevention in action: First inspection of this tester's next test plan: 0.2 major defects per test case

- The most effective individual speed for 'checking a document against all related documents' in page/hr
- Not 'reading' speed, but rather correlation speed
- Failure to use it, gives 'bad estimate' for 'Remaining defects'
- 100~250 SLoC per hour
- 1 page of 300 words per hour ("logical page")

Ref. Dorothy Graham

- Inspection can find deep-seated defects
- <u>All of that type</u> can be corrected
- Needs optimum checking rate
- In the above case we are clearly taking a sample
- In the "shallow" case we were also taking a sample, however, we didn't feel it !

Ultimate Goal of a What We Do

Delivering the Right Result at the Right Time, wasting as little time as possible (= efficiently)

• Providing the customer with

- what he needs
- at the time he needs it
- to be satisfied
- to be more successful than he was without it
- **Constrained by** (win win)
 - what the customer can afford
 - what we mutually beneficially and satisfactorily can deliver
 - in a reasonable period of time

Inspection used in various ways

www.malotaux.nl/conferences www.malotaux.nl/booklets www.malotaux.nl/inspections

Niels Malotaux

N R Malotaux Consultancy

+31-655 753 604

niels@malotaux.nl

www.malotaux.nl

www.malotaux.nl/booklets

- 1 Evolutionary Project Management Methods (2001) Issues to solve, and first experience with the Evo Planning approach
- 2 How Quality is Assured by Evolutionary Methods (2004) After a lot more experience: rather mature Evo Planning process
- 3 Optimizing the Contribution of Testing to Project Success (2005) How Testing fits in
- 3a Optimizing Quality Assurance for Better Results (2005) Same as Booklet 3, but for non-software projects
- 4 Controlling Project Risk by Design (2006) How the Evo approach solves Risk by Design (by process)
- 5 TimeLine: How to Get and Keep Control over Longer Periods of Time (2007) Replaced by Booklet 7, except for the step-by-step TimeLine procedure
- 6 Human Behaviour in Projects (APCOSE 2008) Human Behavioural aspects of Projects
- 7 How to Achieve the Most Important Requirement (2008) Planning of longer periods of time, what to do if you don't have enough time
- 8 Help! We have a QA Problem ! (2009) Use of TimeLine technique: How we solved a 6 month backlog in 9 weeks
- RS Measurable Value with Agile (Ryan Shriver 2009) Use of Evo Requirements and Prioritizing principles

www.malotaux.nl/inspections

Inspection pages

More

Dijkstra (1972)

It is a usual technique to make a program and then to test it However:

Program testing can be a very effective way to show the presence of defects

but it is hopelessly inadequate for showing their absence

Conventional testing:

• Pursuing the very effective way to show the presence of defects

The challenge is, however:

- Making sure that there are no defects (development)
- How to show their absence if they're not there (testing ?)

